15 October 2001 File No. 27285-004

Mr. Brian Mossman Boeing Realty Corporation 3855 Lakewood Blvd. Building 1A MC D001-0097 Long Beach, California 90846

Subject: Site Closure Evaluation - Parcel D Deep Soils, Boeing Realty Corporation (BRC) Former C-6 Facility, Los Angeles, California

Dear Mr. Mossman:

Haley & Aldrich, Inc. (Haley & Aldrich) has conducted an evaluation for recommended closure of deep soils (vadose zone soils at depths greater than 12 feet below ground surface [bgs]) at the subject Parcel D property (subject parcel). The subject parcel is one of four parcels (Parcels A through D) of the BRC Former C-6 Facility, at 19503 South Normandie Avenue, in Los Angeles, California.

EXECUTIVE SUMMARY

BRC has completed their investigation, remediation, and risk assessment evaluation of impacted soils within the subject parcel. These activities included:

- Investigation of the vertical and lateral extent of soil impacts
- Remediation of arsenic-impacted shallow soil
- Groundwater monitoring for the presence of arsenic
- Preparation and regulatory approval of risk assessment work plans
- Evaluation of the potential for adverse health effects from residual soil impacts
- Evaluation of the potential impacts on groundwater quality from residual soil impacts

Based on the closure evaluation presented herein, it is recommended that the Regional Water Quality Control Board – Los Angeles Region (RWQCB) issue a "no further action" letter for deep soil impacts at the subject parcel (Parcel D) based on the following conclusions:

- 1. A review of the results of the investigation and shallow soil remediation activities conducted at the subject parcel from 1999 through 2001 indicates that both the vertical and lateral extent of soil impacts have been defined and removed as appropriate.
- 2. Parcel D risk assessment guidelines were developed in the Parcel D Sampling and Analysis Plan (Integrated 1999a) and results of the initial post-demolition risk assessment are included in the Parcel D Post-Demolition Risk Assessment report (Integrated 2000).
- 3. In a letter dated June 27, 2000, the Department of Toxic Substances Control (DTSC) indicated that it agreed with the conclusion that residual soil impacts do not pose

unacceptable health risks. The results of the post-demolition risk assessment, approved by DTSC, also indicate that the soil does not pose unacceptable risk to human health from inhalation of volatile organic compounds (VOCs) from VOC vapor migration into onsite buildings.

- 4. In a letter from the RWQCB dated February 25, 2000, the RWQCB concurred with completion of the arsenic-impacted shallow soil remediation activities, however requested additional depth-specific soil VOC data near boring B7 due to increasing concentrations at 25 feet bgs. Boring D1 was advanced to groundwater (65 feet below ground surface (bgs)) and results indicated decreasing VOC concentrations below 25 feet bgs. The RWQCB indicated that no additional soil or groundwater investigation is required on Parcel D with respect to arsenic in a letter dated March 14, 2001. The results of boring D1 meet the RWQCB-requested data requirements for completing the deep soil risk assessment.
- 5. Concentrations of phenol have been detected in soil and concentrations of chloroform, and the chlorinated VOCs tetrachloroethylene (PCE), and methylene chloride have been detected in onsite soil and groundwater. No source of phenol and chlorinated VOCs originating from the subject parcel has been identified. Chlorinated VOCs have been detected in groundwater migrating from the Montrose site (to the immediate south of the subject parcel) onto the subject parcel. Thus, it appears that the concentrations of chlorinated VOCs and possibly phenol detected in onsite soil samples may be attributed to vapor migration from impacted groundwater and/or impacted soils beneath the Montrose site.
- 6. The following additional potential exposure pathways were evaluated after incorporating the January 2001 investigation results:
 - inhalation of VOCs in indoor air from upward VOC vapor migration from deep soil into onsite buildings
 - inhalation of VOCs in indoor air from upward VOC vapor migration from groundwater into onsite buildings
 - inhalation of VOCs in indoor air due to VOC migration from deep soil leachate migration to groundwater and subsequent VOC vapor migration from groundwater into indoor air

Adding the estimated risks from the above-listed pathways to the potential on-site receptors as presented in the post-demolition risk assessment do not result in risks greater than the Office of Environmental Health Hazard Assessment (OEHHA)-approved acceptable risk levels.

7. The existing residual chemical concentrations in onsite soils do not pose a threat to groundwater quality.

BACKGROUND

SITE LOCATION

The subject parcel is located within the BRC Former C-6 Facility at 19503 South Normandie Avenue, in Los Angeles, California. The approximate location of the subject parcel is depicted in Figure 1. A site plan is presented as Figure 2.

SITE LAND USE HISTORY

The subject parcel was used primarily for parts storage and/or employee parking from the 1940s until the property was vacated in 1996 (CDM 1991; KJC 1996a,b,c; Integrated 1999a). Former onsite Building 59A was used for hazardous waste storage and as an equipment maintenance garage. The storage yard was used to store various parts, including airplane parts, steel beams and pipes, concrete parking pylons, cinder blocks, and tires; it also contained a trash compactor. Subsurface piping or underground storage tanks containing potentially hazardous substances are not currently and have not historically been located on the subject parcel.

OFFSITE SOURCES OF GROUNDWATER IMPACT

The property adjacent to the south of the subject parcel formerly contained the Montrose Chemical Corporation facility (Montrose site), which manufactured dichlorodiphenyl-trichloroethane (DDT), an organochlorine pesticide, from 1947 to 1982 (Integrated 1999a). Dense nonaqueous-phase liquid (DNAPL), comprised primarily of chlorinated VOCs, has been encountered in groundwater beneath the Montrose site (Integrated 2000). In addition, dissolved concentrations of VOCs, including chloroform, extend northward from the Montrose site to beneath the subject parcel and Parcel C of the BRC Former C-6 Facility (KJC 2000b). Figure 10 (included herein as Appendix B) of the KJC 2000b report, presents a composite map of the chloroform concentration in shallow groundwater in proximity to the BRC Former C-6 Facility property. Groundwater monitoring well XMW-09 provides groundwater quality data for this area. The location of the Montrose site in relation to the subject parcel is depicted in Figure 3.

PARCEL D CLOSURE EVALUATION

SITE INVESTIGATION HISTORY

Site investigation activities were conducted at the subject parcel in June and July 1999, October 2000, and January 2001. A list of the various investigation documents reviewed is presented in Appendix A. An evaluation of the completeness of the onsite investigation activities was conducted, including a review of those activities conducted in 1999 and 2000, and of additional activities conducted in 2001.

Overview of Investigation Activities

A sampling and analysis plan (SAP) (Integrated 1999a) was submitted to the RWQCB for review prior to the commencement of the investigation activities in June and July 1999. The RWQCB approved the SAP in a letter dated May 27, 1999 (RWQCB 1999). The objective of the subject parcel investigation was "to characterize soil conditions, support future remediation (if deemed necessary), and support a post-demolition risk assessment of the potential health risks to future users of the redeveloped parcel scenario" (Integrated 1999b).

A review of previous investigation reports (Integrated 1999b, 2000) indicated that soil was investigated to depths of approximately 25 feet bgs. The groundwater table of the uppermost water-bearing zone was reported to be approximately 65 feet bgs. Soil samples were collected from 10 borings at depths of 0.5, 5, 10, 15, and 25 feet bgs and were analyzed for VOCs, semivolatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), pesticides, and metals. The locations of these borings are depicted on Figure 4.

A review of the analytical data for the soil samples collected on the subject parcel in June/July 1999 indicates the reported concentrations appear to be delineated with the exception of chloroform and phenol. Chloroform is considered a VOC, and phenol is considered an SVOC. The deepest soil samples (collected from 25 feet bgs) obtained from Borings B5 through B8 have detected concentrations of chloroform, but only chloroform concentrations of samples obtained from Boring B7 appear to be increasing with depth. The highest concentration of chloroform detected, 0.330 mg/kg, is from the sample obtained from Boring B7 at a depth of 25 feet bgs (Integrated 1999b). The deepest soil samples obtained from Borings B5 and B8 (25 feet bgs) also have detected concentrations of phenol of 1.5 mg/kg and 0.74 mg/kg respectively. The phenol concentrations of the samples obtained from both of these borings appear to be increasing with depth. The highest concentration of phenol detected, 1.50 mg/kg, is from the sample obtained from Boring B5 at a depth of 25 feet bgs.

Borings B5 through B8 were the southernmost borings drilled within the subject parcel. The Montrose site groundwater monitoring well (XMW-09) is the closest monitoring well in

proximity to Borings B5 through B8. The most recent groundwater sample collected from this well was collected on October 12, 2000. This sample contained a chloroform concentration of 1.5 milligrams per liter (mg/L). A copy of the laboratory results for the October 12, 2000 groundwater sample is presented as Appendix C. The locations of monitoring well XMW-09 and of Borings B5 through B8 are also depicted in Figure 4. No phenol groundwater data is presented in either the KJC 2000a or KJC 2000b report for this well or other wells situated in proximity to the subject parcel.

No source of phenol and chlorinated VOCs originating from the subject parcel has been identified. As indicated above, chlorinated VOCs have been detected in groundwater migrating from the Montrose site onto the subject parcel. Thus, it appears that the concentrations of chlorinated VOCs and possibly phenol detected in onsite soil samples may be attributed to vapor migration from impacted groundwater and/or impacted soils that have migrated beneath the Montrose site to the subject parcel.

Additional Investigation of Arsenic in Groundwater - 2000

In a letter from the RWQCB dated February 25, 2000 (RWQCB 2000), the RWQCB concurred with the completion of the arsenic-impacted shallow soil remediation activities documented in the October 1999 Integrated report (Integrated 1999b), and requested monitoring for potential arsenic impacts to groundwater beneath Parcel D. In response to the February 25, 2000 RWQCB letter, a groundwater sample was obtained on October 12, 2000 from a groundwater monitoring well (XMW-09) situated on the subject parcel (BRC 2000a). BRC transmitted the arsenic results from the groundwater sample to the RWQCB in a letter, dated November 28, 2000. The reported arsenic concentration for the groundwater sample collected from XMW-09 was less than the laboratory detection limit of 0.010 milligrams per liter (mg/L). After review of the arsenic data, the RWQCB indicated in a letter dated March 14, 2001, that no additional soil or groundwater investigation is required on Parcel D with respect to arsenic.

Additional Investigation of VOC Impacts - 2001

In a letter prepared by the RWQCB on January 5, 2001, the RWQCB indicated that "no further action is required for the shallow soils at Parcel D and concurred that the site is appropriate for commercial/industrial redevelopment provided that redevelopment does not prevent or interfere with any required supplemental investigation, remediation or monitoring". The RWQCB letter further indicated that they will review the existing data and determine if any additional investigation, remediation, or monitoring is required for the deeper soils (below 12 feet bgs to the underlying groundwater) or groundwater beneath Parcel D. The RWQCB also acknowledged that they "are aware of significant groundwater contamination migrating from the adjacent Montrose facility, a United States Environmental Protection Agency (EPA) Superfund Program site, which has resulted in significant groundwater contamination adjacent and beneath Parcel D.

Pursuant to the request of the RWQCB, one additional soil boring (Boring D1) was advanced adjacent to the former Boring B7 by KJC on January 29, 2001 to delineate chloroform concentrations in deep soil beneath the subject site. Boring D1 was completed using a truck-mounted hollow-stem auger drill rig. Soil samples were collected at depths of approximately 35, 45, and 55 feet bgs using a California-modified split-spoon sampler equipped with two decontaminated six-inch brass sample sleeves. The ends of the sleeves were sealed with teflon and plastic end caps and placed in a cooler with ice for transport to the analytical laboratory following standard chain-of-custody procedures. Each sample was analyzed for VOCs following the EPA Method 8260B. A copy of the laboratory report is presented as Appendix D, and a copy of the boring log is presented as Appendix E.

A review of the laboratory results indicates that chloroform and methylene chloride were detected slightly above the detection limits. Each of the reported chloroform concentrations from Boring D1 is less than the highest chloroform concentration for the June/July 1999 investigation activities. These results and previously detected PCE and phenol results for soil samples collected on the subject parcel are depicted on Figure 4. The highest chloroform concentration, 0.016 mg/kg, was measured in the soil sample collected at a depth of approximately 45 feet bgs. This concentration is less than the previous chloroform concentration measured in the soil sample collected at 25 feet bgs in Boring B7. Thus, the reported concentrations in Boring D1 indicate vertical delineation and a decrease in chloroform concentrations with depth. The highest methylene chloride concentration is 0.0068 mg/kg (slightly higher than the laboratory detection limit of 0.0050 mg/kg) for the soil sample collected at a depth of approximately 35 feet bgs. Since methylene chloride had not been detected in soil samples during the June/July 1999 investigation, it's detection in boring D1 at trace levels is not considered to be of concern.

DTSC and RWQCB Concurrence with Post-Demolition Risk Assessment

A post-demolition risk assessment was conducted to evaluate "the health protectiveness of post-demolition site conditions" (Integrated 2000). The DTSC reviewed the post-demolition risk assessment and indicated in a letter dated June 27, 2000 (DTSC 2000) that it agrees with the conclusion that residual soil impacts do not pose health risks greater than acceptable levels. An evaluation of the results of the previously prepared post-demolition risk assessment, and additional risk assessment and groundwater quality protection assessment after incorporating the data from the January 29, 2001 soil sampling activities is summarized below. The associated risk assessment calculations are presented in Appendix F.

A review of the post-demolition risk assessment (Integrated 2000) indicated that, subsequent to the 1999 investigation and shallow soil remediation activities at the subject parcel, a human health risk assessment was conducted to evaluate potential risk posed by residual impacts to onsite soil. Chemicals of potential concern (COPCs) identified for the post-demolition risk assessment included arsenic, beryllium, chloroform, phenol, and PCE. Potential inhalation

exposure due to migration of VOC vapors into indoor air within buildings was evaluated using VOC concentrations detected throughout the soil column.

Additional Risk Assessment Activities

VOCs in groundwater may also volatilize from groundwater and migrate upward through the soil column and into indoor air. Potential VOC vapor migration from groundwater into indoor air within buildings was not evaluated in the post-demolition risk assessment, nor was potential for further degradation of groundwater quality due to VOC leaching from soil to groundwater. Thus, the following potential exposure pathways not previously addressed in the post-demolition risk assessment were evaluated and summarized herein:

- inhalation of VOCs in indoor air from upward VOC vapor migration from deep soil into onsite buildings incorporating the January 2001 investigation results
- inhalation of VOCs in indoor air from upward VOC vapor migration from groundwater into onsite buildings
- inhalation of VOCs in indoor air due to VOC migration from deep soil leachate migration to groundwater and subsequent VOC vapor migration from groundwater into indoor air

Adding the estimated risks from the above-listed pathways (see Appendix F) to the potential onsite receptors as presented in the post-demolition risk assessment do not result in risks greater than the OEHHA-approved acceptable risk levels.

Groundwater Quality Impact Assessment

As indicated above, after review of the arsenic result for an onsite groundwater sample collected in October 2000, the RWQCB indicated in a letter dated March 14, 2001, that no additional soil or groundwater investigation is required on Parcel D with respect to arsenic.

Potential further degradation of groundwater due to VOC leaching from soil to groundwater is also evaluated herein. Results of our evaluation indicate that leaching of maximum onsite VOCs concentrations in soil would result in potential groundwater concentrations that are less than the California drinking water standards, specifically the Maximum Contaminant Levels (MCLs). Therefore, as indicated in Appendix F, the existing residual chemical concentrations in onsite deep soils do not pose a further threat to groundwater quality.

CONCLUSIONS AND RECOMMENDATIONS

Based on the closure evaluation presented herein, it is recommended that no further action be granted by the RWQCB for deep soil impacts at the subject parcel based on the following

conclusions.

- 1. A review of the results of the investigation and shallow soil remediation activities conducted at the subject parcel from 1999 through 2001 indicates that both the vertical and lateral extent of soil impacts have been delineated and removed as appropriate.
- 2. In a letter from the RWQCB dated February 25, 2000, the RWQCB concurred with completion of the arsenic-impacted shallow soil remediation activities, and in a letter dated March 14, 2001, the RWQCB indicated that no additional soil or groundwater investigation was required on Parcel D with respect to arsenic.
- 3. In a letter dated June 27, 2000, the DTSC indicated that it agreed with the conclusion that residual soil impacts do not pose health risks greater than acceptable levels. The results of the post-demolition risk assessment, approved by DTSC, indicated that the soil does not pose a risk to human health greater than acceptable levels from inhalation of VOCs from upward VOC vapor migration into onsite buildings.
- 4. Relatively low concentrations of phenol have been detected in onsite soil and relatively low concentrations of chloroform and PCE have been detected in onsite soil and groundwater. No source of phenol and chlorinated VOCs originating from the subject parcel has been identified. Chlorinated VOCs have been detected in groundwater migrating from the Montrose site onto the subject parcel. Thus, it appears that the concentrations of chlorinated VOCs and possibly phenol detected in onsite soil samples may be attributed to vapor migration from impacted groundwater and/or impacted soils that have migrated beneath the Montrose site to the subject parcel.
- 5. The following additional potential exposure pathways were evaluated after incorporating the January 2001 investigation results:
 - inhalation of VOCs in indoor air from upward VOC vapor migration from deep soil into onsite buildings
 - inhalation of VOCs in indoor air from upward VOC vapor migration from groundwater into onsite buildings
 - inhalation of VOCs in indoor air due to VOC migration from deep soil leachate migration to groundwater and subsequent VOC vapor migration from groundwater into indoor air

Adding the estimated risks from the above-listed pathways to the potential on-site receptors as presented in the post-demolition risk assessment do not result in risks greater than the OEHHA-approved acceptable risk levels.

6. The existing residual chemical concentrations in onsite soils do not pose a threat to groundwater quality.

If you have any questions regarding the content of this letter, please contact either of the undersigned at (619) 280-9210.

Sincerely yours, HALEY & ALDRICH, INC.

Anita Broughton, REA, CIH Risk Assessment Task Manager

Richard M. Farson, P.E. Senior Engineer

Scott Zachary Project Manager

Attachments

List of Attachments

Figure 1	Parcel D Location Map
Figure 2	Site Plan
Figure 3	Surrounding Properties Map
Figure 4	Sample Location and Chemical Concentration Map
Appendix A	References
Appendix B	Figure 10 of K/J 2000b
Appendix C	Laboratory Report – October 2000 Groundwater Sampling Event
Appendix D	Laboratory Report – January 2001 Soil Sampling Event
Appendix E	Boring D-1 Boring Log
Appendix F	Risk Assessment Discussion and Calculations
Table F-1	Summary of Risk Associated with VOC Vapor Migration from Groundwater
Table F-2	Site-specific Geotechnical Parameters at the BRC Former C-6 Facility
Table F-3	Soil Particle Size Distribution at the BRC Former C-6 Facility
Table F-4	Comparison of Maximum Soil Concentrations to Site-specific SSLs Calculated
	at 25 Feet Below Ground Surface
Table F-5	Derivation of Estimated Maximum VOC Concentrations in Groundwater at
	Parcel D Using a Site-specific SSL Equation
Table F-6	Comparison of Estimated VOC Concentrations in Groundwater to Measured
	VOC Concentrations in Groundwater
Table F-7	Summary of Cumulative Risks
Appendix G	Vapor Migration Model Results

Appendix A References

References

Camp Dresser & McKee, Inc. (CDM), 1991 (CDM 1991). Phase I Environmental Assessment of the Douglas Aircraft Company C-6 Facility, Parking Lot and Tool Storage Yard, Los Angeles, CA. June 13.

Kennedy/Jenks Consultants (KJC), 1996 (KJC 1996a). Phase I Environmental Assessment Parcel A, McDonnell Douglas Realty Company. March 20.

KJC, 1996 (KJC 1996b). Phase I Environmental Assessment Parcel B, McDonnell Douglas Realty Company. April.

KJC, 1996 (KJC 1996c). Phase I Environmental Assessment Parcel C, McDonnell Douglas Realty Company. May.

Integrated Environmental Services, Inc. (Integrated), 1997 (Integrated 1997). Health-Based Remediation Goals for Surface Soils, McDonnell Douglas Realty Company, C-6 Facility, Parcel. August.

Integrated, 1999 (Integrated 1999a). Parcel D Sampling and Analysis Plan, Boeing Realty Corporation C-6 Facility, Los Angeles, California. May.

Integrated, 1999 (Integrated 1996b). Parcel D Site Investigation and Excavation Report, Boeing Realty Corporation C-6 Facility, Los Angeles, California. October.

Regional Water Quality Control Board, Los Angeles Region (RWQCB), 1999 (RWQCB 1999). Letter prepared for the Parcel D Sampling and Analysis Plan, Boeing Realty Corporation (BRC) C-6 Facility, Los Angeles (File No. 100.315) (SLIC No. 410), May 27.

Integrated, 2000 (Integrated 2000). Parcel D Post-Demolition Risk Assessment, Boeing Realty Corporation C-6 Facility, Los Angeles, California. February.

RWQCB, 2000 (RWQCB 2000). Letter prepared entitled *Site Investigation and Excavation Report, Boeing Realty Corporation (BRC) C-6 Facility, Los Angeles (File No. 100.315) (SLIC No. 410)* documenting completion of the arsenic-impacted soil remediation activities and requesting monitoring for potential arsenic impacts to groundwater beneath Parcel D. February 25.

Department of Toxic Substances Control (DTSC) Human and Ecological Risk Division (HERD), 2000 (DTSC 2000). Letter prepared for the Boeing C-6 Facility, Parcel D, Los Angeles, California. June 27.

KJC, 2000 (KJC 2000a). Boeing Realty Corporation's C-6 Facility, Los Angeles, California, Groundwater Monitoring Report, 2nd Quarter 2000. July.

BRC, 2000a (BRC 2000a). Letter prepared entitled Groundwater Monitoring Plan, Groundwater Investigation Work Plan, and Groundwater Investigation for Arsenic at Parcel D, Boeing Realty Corporation, Former C-6 Facility, 19503 South Normandie Avenue, Los Angeles. October 17.

KJC, 2000 (KJC 2000b). Boeing Realty Corporation, Groundwater Status Report, Former C-6 Facility, Los Angeles, California. October 27.

BRC, 2000 (BRC 2000b). Letter prepared entitled Arsenic Results for Montrose Well XMW-09 for Boeing Realty Corporation, Former C-6 Facility, 19503 South Normandie Avenue, Los Angeles. November 28.

RWQCB, 2001 (RWCB 2001a). Letter prepared entitled *No Further Action For Shallow Soils*, *Parcel D, Former Boeing C-6 Facility, Torrance (File No. 95-036.* January 5.

RWQCB, 2001 (RWQCB 2001b). Letter prepared entitled Results of Investigation to Determine Presence of Arsenic in Groundwater Beneath Parcel D, Former C-6 Facility, Boeing Realty Corporation (File No. 95-036. March 14.

Appendix B Figure 10 of K/J 2000b

 ${\bf Appendix}~{\bf C}\\ {\bf Laboratory~Report-October~2000~Groundwater~Sampling~Event}$

STL Los Angeles

1721 South Grand Avenue Santa Ana, CA 92705-4808

Tel: 714 258 8610 Fax: 714 258 0921 www.stl-inc.com

November 1, 2000

STL LOT NUMBER: E0J120322

Rus Purcell Kennedy/Jenks Consultants 2151 Michelson Drive Suite 100 Irvine, CA 92612

Dear Mr. Purcell,

This report contains the analytical results for the sample received under chain of custody by STL Los Angeles on October 12, 2000. This sample is associated with your Boeing C6 project.

All applicable quality control procedures met method-specified acceptance criteria. Matrix related anomalies are footnoted within the report.

This report shall not be reproduced except in full, without the written approval of the laboratory.

If you have any questions, please feel free to call me at 714-258-8610.

Sincerely,

Diane Suzuki Project Manager

cc: Project File

E0J120322

[] 17310 Red Hill Ave., #220, Irvine, CA 92714

2191 East Bayshore Rd., #200, Palo Alto, CA 94303

☐ 6190 Neil Road, #300, Reno, NV 89502
 ☐ 3336 Bradshaw Rd., #140, Sacramento, CA 95827

Ul 303 Second St., San Francisco, CA 94107

[] 1000 Hill Rd., #200, Ventura, CA 93003

BOE-C6-0000104

nic D	(Dis	50/0	<u>.0)</u>		ANALYSES REQUESTED
Carrier/Way Bill No.	Phone		Address L.A.	Lab Destination STL Labs	

Sampler Name Shane Scrimshire

Address 2151 Middles Dr.

100

Company Kennedy

1 Jenks

Report To Pet Murphy

5866-558-199

Source of Samples Bocing Parcel C

Project No. QO4030.00

Phone 949-261-1577

Irvine

CA

Lat

Date

10-12-00

POSSIBLE HAZARDS:

(1)	(1)	COLLE	COLLECTION (2)	2)		(3)	<u>4</u>	Turn	-Se	261			 		Comment/Conditions
ID No.	Client ID No.	Date	Time	Type I	epth	Type Depth Comp. Pres. around	Pres.	around	A	3,	 				(Container type, container number, etc.)
	MW-17-101200	10/13/10 W	1340		1	1		Rush ×	×	×			 	W	7.45810 14 0001 -1 + SUON-S
															
											 		 	,	
				-							 <u> </u>				
it only of	rite only one sample number in each space														

000002

⁽⁵⁾ Write each analyses requested across top. Place an "X" in appropriate column to indicate type of analysis needed for each sample

•			
i			
ı			

	Shane Sarimshire	Print Name	SAMPLE RELINQUISHED BY:
0	the the	Signature	
	KIS	Company	
	Pako	Date Time	
	1600	Time	
	o Suzuler (Print Name	SAMPLE RECEIVED BY:
		Signature	
	775	Company	
		Date	
	125%	Time	

⁽¹⁾ Write only one

⁽²⁾ Specify type of sample(s): Water (W), Solid (S), or indicate type.

⁽³⁾ Mark each sample which should be composited in Laboratory as follows: Place an "A" in box for each sample that should be composited into one sample; use sequential letter for additional groups.

⁽⁴⁾ Preservation of sample.

STL - LOS AN	IGELES						
PROJECT RECEI			Date:	10-12-0	0		
Quantims Lot #: 1	EOJ 12	0 322	Quote #:				
Client Name: Ko	NURDY FE	INKS	Project: 2	0041020-0	0		
Received by: 100	/		_ Date/Tim	e Received: 10/	12 16:5	0	
Delivered by : 0	Client Air	borne	Ex DHL	□Ultra-Ex □Re	y B.		
	IPS ∑DE	S Oth	er				
	*****		•••••	• • • • • • • • • • • • • • • • •			
			<u>.</u>			/ Date	
Custody Seal Stat	us: []Intact	☐Broken	Mone		AU	10/12	
Custody Seal #(s) Sample Container	•			∏No Seal #			
Sample Container	(s): STL-LA	∐Client C	N/A				
Temperature(s) (C							
Thermometer Use							
· · · - ·				••	7 —		
Anomalies:	₹No	∐Yes	(See Clouseau)				
Labeled by		• • • • • • • • • • • • • • • • • • • •			·····		
Labeling checked by							
Turn Around Time: RUSH-24HR RUSH-48HR RUSH-72HR NORMAL AU 10/12							
Short-Hold Notification: Ph							
Outside Analysis(es) (Test/Lab/Date Sent Out):							
Outside Analysis(es) (Test/Lad/Date Sent Out):							
		· · · · · · · · · · · · · · · · · · ·					
·	***************************************		<u> </u>				

	·						
	• • • • •	· · · · LEAVE NO BL	ANK SPACES ; USE N/A				
Fraction /						PH	
VOAh F 3						N/A	
ILT PB 1							
	,						
h.HCl sa:Sodium Hy	douted man Zine AccountSed	•	e:HNO3 srEHNO3- Bostle PB: Poly Bostle	Field Discred #9EHONO3-La E:Encore Sampler V:VO.			
CGI.Clear Glass law CGB:Clear * Number of VOA's W			Annual to the Life's DOME		-		
					7		
LOGGED BY/DAT	「E: んぴン	10/10/0	REVIEWED	BY/DATE: (_	S 10/	12/02	

EXECUTIVE SUMMARY - Detection Highlights

E0J120322

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-9-101200 10/12/00 13:40 001				
Chlorobenzene	190	25	ug/L	SW846 8260B
Chloroform	1500	25	ug/L	SW846 8260B
Tetrachloroethene	55	25	ug/L	SW846 8260B
Trichloroethene	9.8 J	25	ug/L	SW846 8260B

METHODS SUMMARY

E0J120322

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Inductively Coupled Plasma (ICP) Metals Volatile Organics by GC/MS	SW846 6010B SW846 8260B	SW846 3005A SW846 5030B/826

References:

SW846

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

E0J120322

WO #	SAMPLE#	CLIENT SAMPLE ID	 DATE	TIME
DM3H8	001	MW-9-101200	10/12/00	13:40

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH. porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MW-9-101200

GC/MS Volatiles

Lot-Sample #...: E0J120322-001 Work Order #...: DM3H81AD Matrix......: WATER Date Sampled...: 10/12/00 13:40 Date Received..: 10/12/00 16:50 MS Run #.....: 0290179

 Prep Date....:
 10/15/00
 Analysis Date..:
 10/15/00

 Prep Batch #...:
 0290617
 Analysis Time..:
 20:58

Dilution Factor: 25

Analyst ID....: 004648 Instrument ID..: MSC

Method....: SW846 8260B

		REPORTIN	ſG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	250	ug/L	75	
Benzene	ND	25	ug/L	7.5	
Bromobenzene	. ND	25	ug/L	7.5	
1-Bromo-2-chloroethane	ND	25	ug/L	12	
Bromochloromethane	ND	25	ug/L	7.5	
Bromoform	ND	25	ug/L	7.5	
Bromomethane	ND	50	ug/L	25	
2-Butanone	ND	120	ug/L	75	
n-Butylbenzene	ND	25	ug/L	7.5	
sec-Butylbenzene	ND	25	ug/L	7.5	
tert-Butylbenzene	ND	25	ug/L	5.0	
Carbon disulfide	ND	25	ug/L	7.5	
Carbon tetrachloride	ND	25	ug/L	7.5	
Chlorobenzene	190	25	ug/L	7.5	
Dibromochloromethane	ND	25	ug/L	7.5	
Bromodichloromethane	ND	25	ug/L	7.5	
Chloroethane	ND	50	ug/L	7.5	
Chloroform	1500	25	ug/L	5.0	
Chloromethane	ND	50	ug/L	7.5	
2-Chlorotoluene	ND	25	ug/L	7.5	
4-Chlorotoluene	ND	25	ug/L	7.5	
1,2-Dibromo-3-chloro-	ND	50	ug/L	15	
propane					
1,2-Dibromoethane	ND	25	ug/L	7.5	
Dibromomethane	ND	25	ug/L	7.5	
1,2-Dichlorobenzene	ND	25	ug/L	5.0	
1,3-Dichlorobenzene	ND	25	ug/L	5.0	
1,4-Dichlorobenzene	ND	25	ug/L	7.5	
Dichlorodifluoromethane	ND	50	ug/L	10	
1,1-Dichloroethane	ND	25	ug/L	5.0	
1,2-Dichloroethane	ND	25	ug/L	5.0	
1,1-Dichloroethene	ND	25	ug/L	5.0	
cis-1,2-Dichloroethene	ND	25	ug/L	7.5	
trans-1,2-Dichloroethene	ND	25	ug/L	5.0	
1,2-Dichloropropane	ND	25	ug/L	5.0	
1,3-Dichloropropane	ND .	25	ug/L	10	
2,2-Dichloropropane	ND	25	ug/L	7.5	

(Continued on next page)

Client Sample ID: MW-9-101200

GC/MS Volatiles

Lot-Sample #...: E0J120322-001 Work Order #...: DM3H81AD Matrix..... WATER

REFORTING RESULT LIMIT UNITS MDL
1,1-Dichloropropene
cis-1,3-Dichloropropene ND 25 ug/L 7.5 trans-1,3-Dichloropropene ND 25 ug/L 5.0 Ethylbenzene ND 25 ug/L 5.0 Hexachlorobutadiene ND 25 ug/L 5.0 2-Hexanone ND 120 ug/L 5.0 Isopropylbenzene ND 25 ug/L 5.0 P-Isopropyltoluene ND 25 ug/L 5.0 Methylene chloride ND 25 ug/L 5.0 Methyl-2-pentanone ND 120 ug/L 5.0 Methyl-2-pentanone ND 25 ug/L 12 Methyl-2-pentanone ND 25 ug/L 12 Methyl-2-pentanone ND 25 ug/L
trans-1,3-Dichloropropene ND 25 ug/L 12 Ethylbenzene ND 25 ug/L 5.0 Hexachlorobutadiene ND 25 ug/L 5.0 2-Hexanone ND 120 ug/L 50 Isopropylbenzene ND 25 ug/L 5.0 P-Isopropyltoluene ND 25 ug/L 5.0 Methylene chloride ND 25 ug/L 5.0 Methyl-2-pentanone ND 120 ug/L 5.0 Methyl tert-butyl ether ND 25 ug/L 5.0 Methyl tert-butyl ether ND 25 ug/L 12 Naphthalene ND 25 ug/L 12 Naphthalene ND 25 ug/L 10 Propylbenzene ND 25 ug/L 10 Styrene ND 25 ug/L 7.5 1,1,2-Tetrachloroethane ND 25 ug/L 7.5
Ethylbenzene ND 25 ug/L 7.5 2-Hexanone ND 120 ug/L 50 150 ug/L 5.0 150 ug/L 10 150 ug/L 10 150 ug/L 10 150 ug/L 10 150 ug/L 7.5 151 ug/L 7.5 152 ug/L 7.5 153 ug/L 7.5 154 ug/L 7.5 155 ug/L 7.5 155 ug/L 7.5 156 ug/L 7.5 157 ug/L 7.5
Hexachlorobutadiene
Isopropylbenzene
p-Isopropyltoluene ND 25 ug/L 5.0 Methylene chloride ND 25 ug/L 5.0 4-Methyl-2-pentanone ND 120 ug/L 50 Methyl tert-butyl ether ND 25 ug/L 12 Naphthalene ND 25 ug/L 10 n-Propylbenzene ND 25 ug/L 10 Styrene ND 25 ug/L 10 Styrene ND 25 ug/L 7.5 1,1,2-Tetrachloroethane ND 25 ug/L 7.5 1,1,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethene S5 25 ug/L 7.5 Tetrachloroethene ND 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 7.5 1,2,4-Trichloro- ND 25 ug/L 7.5 benzene 1,1,1-Trichloroethane ND 25 ug/L 7.5 Trichloroethane ND 25 ug/L 7.5 Trichloropropane ND 25 ug/L 7.5 Trichlorotrifluoro- ND 25 ug/L 7.5 trichlorotrifluoro- ND 25 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 5.0 1,2,4-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 50 ug/L 5.0
Methylene chloride ND 25 ug/L 5.0 4-Methyl-2-pentanone ND 120 ug/L 50 Methyl tert-butyl ether ND 25 ug/L 12 Naphthalene ND 25 ug/L 10 n-Propylbenzene ND 25 ug/L 10 Styrene ND 25 ug/L 7.5 1,1,1,2-Tetrachloroethane ND 25 ug/L 7.5 1,1,2,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethene 55 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 7.5 1,2,4-Trichloro- ND 25 ug/L 7.5 1,1,1-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichloroethane ND 50 ug/L 7.5 Trichloropropane ND 25 ug/L <
4-Methyl-2-pentanone ND 120 ug/L 50 Methyl tert-butyl ether ND 25 ug/L 12 Naphthalene ND 25 ug/L 10 n-Propylbenzene ND 25 ug/L 10 Styrene ND 25 ug/L 7.5 1,1,2-Tetrachloroethane ND 25 ug/L 7.5 1,1,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethene 55 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 7.5 1,2,4-Trichloroethane ND 25 ug/L 7.5 benzene ND 25 ug/L 7.5 Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 7.5 Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 7.5
Methyl tert-butyl ether ND 25 ug/L 12 Naphthalene ND 25 ug/L 10 n-Propylbenzene ND 25 ug/L 10 Styrene ND 25 ug/L 7.5 1,1,1,2-Tetrachloroethane ND 25 ug/L 7.5 1,1,2,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethene 55 25 ug/L 7.5 Tetrachloroethene ND 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 7.5 benzene 1,1,1-Trichloroethane ND 25 ug/L 7.5 trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 25 ug/L 7.5 1,2,3-Trichlorotrifluoro- ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND
Naphthalene ND 25 ug/L 10 n-Propylbenzene ND 25 ug/L 10 Styrene ND 25 ug/L 7.5 1,1,1,2-Tetrachloroethane ND 25 ug/L 7.5 1,1,2,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethene 55 25 ug/L 18 Toluene ND 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 7.5 benzene 1,1,1-Trichloroethane ND 25 ug/L 5.0 1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 7.5 1,2,3-Trichlorotrifluoro- ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 1,2,4-Trimethylbenzene ND 25<
n-Propylbenzene ND 25 ug/L 10 Styrene ND 25 ug/L 7.5 1,1,1,2-Tetrachloroethane ND 25 ug/L 7.5 1,1,2,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethane ND 25 ug/L 18 Toluene ND 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 7.5 benzene ND 25 ug/L 7.5 1,1,1-Trichloroethane ND 25 ug/L 7.5 Trichloroethane ND 25 ug/L 7.5 Trichloroethane ND 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 7.5 1,2,3-Trichlorotrifluoro- ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 1,2,4-Trimethylbenzene ND 25 ug/L
n-Propylbenzene ND 25 ug/L 10 Styrene ND 25 ug/L 7.5 1,1,1,2-Tetrachloroethane ND 25 ug/L 7.5 1,1,2,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethane ND 25 ug/L 18 Toluene ND 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 7.5 1,2,4-Trichloro- benzene ND 25 ug/L 7.5 1,1,1-Trichloroethane ND 25 ug/L 7.5 Trichloroethane ND 25 ug/L 7.5 Trichloroethane ND 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 7.5 1,1,2-Trichlorotrifluoro- ethane ND 25 ug/L 5.0 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
1,1,1,2-Tetrachloroethane ND 25 ug/L 7.5 1,1,2,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethene 55 25 ug/L 18 Toluene ND 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 10 1,2,4-Trichloro- ND 25 ug/L 7.5 benzene ND 25 ug/L 5.0 1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 5.0 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
1,1,2,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethene 55 25 ug/L 18 Toluene ND 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 10 1,2,4-Trichloro- ND 25 ug/L 7.5 benzene ND 25 ug/L 5.0 1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
1,1,2,2-Tetrachloroethane ND 25 ug/L 7.5 Tetrachloroethene 55 25 ug/L 18 Toluene ND 25 ug/L 7.5 1,2,3-Trichloroebenzene ND 25 ug/L 10 1,2,4-Trichloroethane ND 25 ug/L 7.5 benzene ND 25 ug/L 5.0 1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro-ethane ND 25 ug/L 5.0 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
Toluene ND 25 ug/L 7.5 1,2,3-Trichlorobenzene ND 25 ug/L 10 1,2,4-Trichlorobenzene ND 25 ug/L 7.5 benzene ND 25 ug/L 5.0 1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane ND 25 ug/L 5.0
1,2,3-Trichlorobenzene ND 25 ug/L 10 1,2,4-Trichloro- ND 25 ug/L 7.5 benzene 1,1,1-Trichloroethane ND 25 ug/L 5.0 1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 25 ug/L 5.0
1,2,4-Trichloro- benzene ND 25 ug/L 7.5 1,1,1-Trichloroethane ND 25 ug/L 5.0 1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ethane ND 25 ug/L 5.0 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
benzene 1,1,1-Trichloroethane ND 25 ug/L 5.0 1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
1,1,1-Trichloroethane ND 25 ug/L 5.0 1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
1,1,2-Trichloroethane ND 25 ug/L 7.5 Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
Trichloroethene 9.8 J 25 ug/L 7.5 Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
Trichlorofluoromethane ND 50 ug/L 5.0 1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
1,2,3-Trichloropropane ND 25 ug/L 7.5 1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
1,1,2-Trichlorotrifluoro- ND 25 ug/L 5.0 ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
ethane 1,2,4-Trimethylbenzene ND 25 ug/L 5.0
1,2,4-Trimethylbenzene ND 25 ug/L 5.0
- · · · · · · · · · · · · · · · · · · ·
1,3,5-Trimethylbenzene ND 25 ug/L 5.0
$lacksymbol{\cdot}$
Vinyl chloride ND 50 ug/L 7.5
m-Xylene & p-Xylene ND 25 ug/L 12
o-Xylene ND 25 ug/L 5.0
Xylenes (total) ND 25 ug/L 12
Tert-amyl methyl ether ND 50 ug/L 12
Tert-butyl ethyl ether ND 50 ug/L 12
t-Butanol ND 620 ug/L 150
Isopropyl ether ND 50 ug/L 12
Acrolein ND 500 ug/L 300
Iodomethane ND 120 ug/L 25
Acrylonitrile ND 500 ug/L 250
Vinyl acetate ND 120 ug/L 25
Tetrahydrofuran ND 250 ug/L 50

(Continued on next page)

Client Sample ID: MW-9-101200

GC/MS Volatiles

Lot-Sample #: E0J120322-001	Work Order #	.: DM3H81AD	Matrix	: WATER
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
2-Chloroethyl vinyl ether	ND	120	ug/L	50
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	_	
Bromofluorobenzene	97	(75 - 120)		
1,2-Dichloroethane-d4	109	(65 - 130)		
Toluene-d8	100	(80 - 130)		
NOTE(S):				

J Estimated result. Result is less than RL.

MW-9-101200

GC/MS Volatiles

Lot-Sample #: E0J120322-001 Work Order #: DM3H81AD Matrix: WATER

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

ESTIMATED RETENTION

CAS # RESULT TIME UNITS PARAMETER ug/L None

Client Sample ID: MW-9-101200

DISSOLVED Metals

Lot-Sample #...: E0J120322-001 Matrix....: WATER

Date Sampled...: 10/12/00 13:40 Date Received..: 10/12/00 16:50

. . .

 REPORTING
 PREPARATION - WORK

 PARAMETER
 RESULT
 LIMIT
 UNITS
 METHOD
 ANALYSIS DATE
 ORDER #

 Prep Batch #...:
 0288128

 Arsenic
 ND
 0.010
 mg/L
 SW846 6010B
 10/14-10/16/00
 DM3H81AC

Dilution Factor: 1 Analysis Time..: 19:32 Analyst ID....: 003119
Instrument ID..: M01 MS Run #.....: 0288033 MDL...... 0.0040

QC DATA ASSOCIATION SUMMARY

E0J120322

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	WATER WATER	SW846 8260B SW846 6010B		0290617 0288128	0290179 0288033

GC/MS Volatiles

Client Lot #...: E0J120322 Work Order #...: DM8QM1AA Matrix.....: WATER

MB Lot-Sample #: E0J160000-617

Prep Date....: 10/15/00 Analysis Time..: 12:54
Analysis Date..: 10/15/00 Prep Batch #...: 0290617 Instrument ID..: MSC

Analysis Date..: 10/15/00 Prep Batch #...: 0290617 Dilution Factor: 1

Analyst ID....: 004648

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	10	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromobenzene	ND	1.0	ug/L	SW846 8260B
1-Bromo-2-chloroethane	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
2-Butanone	ND	5.0	ug/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	2.0	ug/L	SW846 8260B
2-Chlorotoluene	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane				
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	2.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	${\tt ug/L}$	SW846 8260B
1,2-Dichloropropane	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B

(Continued on next page)

GC/MS Volatiles

Client Lot #: E0J120322	Work Order	#: DM8QM1AA		Matrix: WATER	
		REPORTI:	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B	
2-Hexanone	ND	5.0	ug/L	SW846 8260B	
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B	
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B	
Methylene chloride	ND	1.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B	
Methyl tert-butyl ether	ND	1.0	ug/L	SW846 8260B	
Naphthalene	ND	1.0	ug/L	SW846 8260B	
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	SW846 8260B	
1,2,4-Trichloro-	ND	1.0	ug/L ug/L	SW846 8260B	
benzene	ND	1.0	ug/ n	5W040 0200B	
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichloroethane	ND	1.0	ug/L ug/L	SW846 8260B	
• •					
Trichloroethene	ND	1.0 2.0	ug/L	SW846 8260B	
Trichlorofluoromethane	ND		ug/L	SW846 8260B	
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichlorotrifluoro- ethane	ND	1.0	ug/L	SW846 8260B	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B	
1,3,5-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B	
Vinyl chloride	ND	2.0	ug/L	SW846 8260B	
m-Xylene & p-Xylene	ND	1.0	ug/L ug/L	SW846 8260B	
o-Xylene	ND	1.0	ug/L	SW846 8260B	
Xylenes (total)	ND ND	1.0	ug/L ug/L	SW846 8260B	
Tert-amyl methyl ether	ND	2.0	ug/L ug/L	SW846 8260B	
			_		
Tert-butyl ethyl ether	ND	2.0 25	ug/L	SW846 8260B	
t-Butanol	ND		ug/L	SW846 8260B	
Isopropyl ether	ND	2.0	ug/L	SW846 8260B	
Acrolein	ND	20	ug/L	SW846 8260B	
Iodomethane	ND	5.0	ug/L	SW846 8260B	
Acrylonitrile	81	20	ug/L	SW846 8260B	
Vinyl acetate	ND	5.0	ug/L	SW846 8260B	
Tetrahydrofuran	ND	10	ug/L	SW846 8260B	
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B	
	PERCENT	RECOVER	Y		
SURROGATE	RECOVERY	LIMITS			
Bromofluorobenzene	99	(75 - 12	20)		

(Continued on next page)

GC/MS Volatiles

Client Lot #...: E0J120322 Work Order #...: DM8QM1AA

Matrix....: WATER

REPORTING

		KEFORIING	
PARAMETER	RESULT	LIMIT UNITS	METHOD
1,2-Dichloroethane-d4	96	(65 - 130)	
Toluene-d8	100	(80 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

DISSOLVED Metals

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #: E0J120322	Work Order #: DM8QM1AC	Matrix: WATER
-------------------------	------------------------	---------------

LCS Lot-Sample#: E0J160000-617

Prep Date....: 10/15/00 Analysis Date..: 10/15/00 Prep Batch #...: 0290617 Analysis Time..: 11:45 Dilution Factor: 1 Instrument ID..: MSC

Analyst ID....: 004648

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
Benzene	10.0	9.24	ug/L	92	SW846 8260B
Chlorobenzene	10.0	8.81	ug/L	88	SW846 8260B
1,1-Dichloroethene	10.0	9.86	ug/L	99	SW846 8260B
Toluene	10.0	9.19	ug/L	92	SW846 8260B
Trichloroethene	10.0	8.64	ug/L	86	SW846 8260B
	-	PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
D	_	100	/75 - 12	0)	

SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	100	(75 - 120)
1,2-Dichloroethane-d4	98	(65 - 130)
Toluene-d8	104	(80 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

DISSOLVED Metals

Client Lot #: E0J120322						Matrix:	WATER
PARAMETER	SPIKE AMOUNT	MEASUR AMOUNT		PERCNT RECVRY	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Samp	ple#: E0J	T140000~	128 Prep Bat	ch #	: 0288128		
Arsenic	2.00	1.81	mg/L	91	SW846 6010B	10/14-10/16/00	DM60E1A1
			Dilution Factor	r: 1			
			Analysis Time.	.: 16:48	Analyst ID:	3119 Instrument	ID: M01
NOTE(S):							

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #: E0J120322 LCS Lot-Sample#: E0J160000-617 Prep Date: 10/15/00 Prep Batch #: 0290617 Dilution Factor: 1 Analyst ID: 004648	Analysis Da	#: DM8QM1AC ate: 10/15/00 me: 11:45 ID: MSC	
PARAMETER Benzene Chlorobenzene 1,1-Dichloroethene Toluene Trichloroethene	PERCENT RECOVERY 92 88 99 92 86	RECOVERY LIMITS (75 - 120) (80 - 120) (70 - 130) (80 - 120) (75 - 130)	SW846 8260B SW846 8260B SW846 8260B
SURROGATE Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8		PERCENT RECOVERY 100 98 104	RECOVERY LIMITS (75 - 120) (65 - 130) (80 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #...: E0J120322 Matrix.....: WATER

PERCENT RECOVERY PREPARATION-

PARAMETER RECOVERY LIMITS METHOD ANALYSIS DATE WORK ORDER #

LCS Lot-Sample#: E0J140000-128 Prep Batch #...: 0288128

Arsenic 91 (80 - 120) SW846 6010B 10/14-10/16/00 DM60E1A1

Dilution Factor: 1

Analysis Time..: 16:48 Analyst ID....: 3119 Instrument ID..: M01

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Appendix D Laboratory Report – January 2001 Soil Sampling Event

STL Los Angeles

1721 South Grand Avenue Santa Ana. CA 92705-4808

Tel: 714 258 8610 Fax: 714 258 0921 www.stl-inc.com

February 8, 2001

STL LOT NUMBER: **E1A290176** PO/CONTRACT: 05160-SEV002

Rus Purcell Kennedy/Jenks Consultants 2151 Michelson Drive Suite 100 Irvine, CA 92612

Dear Mr. Purcell,

This report contains the analytical results for the 31 samples received under chain of custody by STL Los Angeles on January 29, 2001. These samples are associated with your BRC, former C-6 torrance harbor Gateway project.

All applicable quality control procedures meet method-specified acceptance criteria. See Project Receipt Checklist for container temperature and conditions. Temperature reading beyond 2 to 6 degrees Celsius is considered not within acceptable criteria unless otherwise noted such as limited transit time from field and test requested. Any matrix related anomaly is footnoted within the report.

STL Los Angeles certifies that the test results provided in this report meet all the requirements of NELAC. This report shall not be reproduced except in full, without the written approval of the laboratory.

If you have any questions, please feel free to call me at 714-258-8610.

Sincerely,

Diane Suzuki Project Manager

cc: Project File

Committed To Your Success

SEVERN TRENT LABORATORIES

CHAIN OF CUSTODY RECORD

					Avenue 2705	1721 South Grand Avenue Santa Ana, CA 92705	1721 So Santa	() 				
			17!S	ORIFS	ORAT	SEVERN TRENT I ARORATORIES	BN TRE	SEVERN TE	1637	1	MPANY: ST	PRINTED NAME/COMPANY:
TIME		SIGNATURE:			1 3	threet	A STANDARD	SIGNATURE:	↓	2		SIGNATURE
DATE		3. RECEIVED BY:	_	DAI			3	2. RECEIVED BY:		DATE	10000	1. RECEIVED BY:
- ME		PRINTED NAME/COMPANY:	動 _ア PR	T _M		20		PRINTED NAME/COMPANY:		25,	MPANY:	PRINTED NAME/COMPANY
1		SIGNALUHE:	<u> </u>	/-/		8	12 mars	SIGNATURE:		1,6		SIGNATURE-
DATE		3. RELINQUISHED BY:		DATE	1	1		2. RELINQUISHED BY		DAIE //	Υ.	1. RELINQUISHED BY:
		□ OTHER) ROUT!	□ 10 DAYS	10	DS DAYS	□ 72 HOURS		□ 48 HOURS	□ 24 HOURS	☐ SAME DAY	REQUIRED TURNAROUND*
		AIRBILL NO.:					VIETHOP:	SHIPMENT METHOD			11 mi	SAMPLER: /
			X	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	#64	VOX	V	5:10	1/29/01		I-34-W	
•			×0	100	VCIB	Both	E,	9110			I-34-W 10	
			<u> </u>		TU	\$5	1:13	8:45			-60	
		×		7	-		_	8:40			-50	
			X	-				8:35	_		-40	
			X					8:25			-30	:
		×		7				8:8	/		02 -	
			×					7:45			-/5	
			×	-				7:35			- 10	
		×	 	7	1/26	\$\$	501	7:30	1/29/01		Z-34-5	
RECAUTIONS	/ REMARKS/PRECAUTIONS	4/		 	R PRESERV.	CONTAINER	SAMPLE MATRIX	SAMPLE TIME	SAMPLE DATE		SAMPLE DESCRIPTION	SAMPLE NO.
				NUI		0.:	PO NO.:		FAX:			FAX:
	\ \ 	~``	/0/	MBE					PHONE:		949.261.1577	PHONE: 940
	///		AN.	R C								
LAB JOB NO.	/	>	ALY)F C					ADDRESS:		, C 93612	FRUINE
	<i> </i>		SIS	ONT					BILL TO:	Steloo	Michelson Dr. Steloo	ADDRESS:
	<i>\</i>	· / / / /	ME	AIN		MATION	BILLING INFORMATION	BILLING			Juy Knight	SEND REPORT TO:
	/////		THO	ERS	0/	04032	Ω	PROJECT NAME/NUMBER:	PROJECT		Kennes & Jenks	COMPANY: K
_	<i>'</i>	, ////	<u></u>	<u></u>		MATION	T INFOR	PROJECT INFORMATION			CUSTOMER INFORMATION	CUST
	1 1 1 1							-			ccess	Committed To Your Success

* RUSH TURNAROUND MAY REQUIRE SURCHARGE

Phone: (714) 258-8610 / Fax: (714) 258-0921

000002

Committed to Jour Success

SEVERN TRENT LABORATORIES

CHAIN OF CUSTODY RECORD

PRINTED NAME/COMPANY: (7)	John John John John John John John John	1. RECEIVED 8Y: DATE	PRINTED NAME COMPANY: 1 45 TIM	SIGNATURE	D BY:	REQUIRED TURNAROUND. SAME DAY 24 HOURS	SAMPLER: //ww	I-25-5	D-29-W	D-29-W	-60	-50	-40	-30	-20	-/5	D-Z9-S	SAMPLE NO. SAMPLE DESCRIPTION		PHONE: 949-261-1577	,	Laurie, a grave	ADDRESS: 2151 Michelson or Stelon	,	COMPANY. KENNEDY Tranks	CUSTOMER INFORMATION
PRIN	/-24) si		TIME PRIN	1/29/01	<u>\</u>	□ 48 HOURS		1/29							/	,	1/29/01	SAMPLE DATE	FAX:	PHONE:		ADDRESS:	BILL TO:		PROJECT	
TED NAME/CO	SIGNATURE Accelde	2. RECEIVED BY:	PRINTED NAME/COMPARY	SIGIVAL OHE:	2. RELINCUISHED BY		SHIPMENT METHOD	12:55	12:30	12:30	10:50	10:40	10:50	10:20	10:15	10:10	10:00	SAMPLE TIME				9,		BILLING	PROJECT NAME/NUMBER:	PROJEC
MPANY:	Fuele		MPAFF)			□ 72 HOURS E	ETHOD:	51.1	X	K,	1.185				/		500/	SAMPLE MATRIX	PO NO.:					BILLING INFORMATION		PROJECT INFORMATION
	to			2		□ 5 DAYS		\$5	VOA	Bottle 1	55						52	CONTAINER PRESERV	••					ATION	04032.6	IATION
1	/		Į			□ 10 DAYS		76 Z	HCT.	Mimic	ICE 1	1:	/		/ ;	///	76/	⊢−		·DE			ONT	AINI	ERG	
TIME / 7.'3[-29/0,	ATE	1-29a	1235	DATE	D ROUTINE		2	₩ ×		×	2	×	×	2	×		-			4.	_		AIN	Eno	'
!	<u> </u>				3. RE	JINE		××	-	×	_	<u> </u>	<u> </u>		_		×	/ Y W Y		/\@/\0/\	4	RE	SOF	MET ST	HOL	<u>`</u>
TED NAN	SIGNATURE	3. RECEIVED BY:	TED NAM	SIGNATURE	3. RELINQUISHED BY:	II OTHER	AIRBILL NO.	×				×			×		X	1		\sim	y		\	\	\	
PRINTED NAME/COMPANY:	i.i.	3γ:	PRINTED NAME/COMPANY	!!	₩.	恵	T NO:	-		<u> </u>				<u> </u>					*&&		\\ !\`\	$\langle \langle \rangle$	<u> </u>	\	\	//
ANY:			ANY:											_						<u> </u>		<u>*</u>		<u> </u>	\	//
														<u> </u>	ļ			RI	<u> </u>	\	<u> </u>		<u> </u>		<u> </u>	
																		MARK		$\overline{}$	7	<u> </u>	\	<u> </u>		
											 							S/PRE			2	<u> </u>		\	\	/
TIME		DATE	TIME		DATE				-									REMARKS/PRECAUTIONS				AB IOB NO				

SEVERN TRENT LABORATORIES

* RUSH TURNAROUND MAY REQUIRE SURCHARGE

1721 South Grand Avenue Santa Ana, CA 92705 Phone: (714) 258-8610 / Fax: (714) 258-0921

No. 202640

CHAIN OF CUSTODY RECORD

CUSTOMER INFORMATION	PROJECT INFORMATION	
COMPANY: Kennedy Junks	PROJECT NAME/NUMBER: 7) 4030 0/	HOD //
SEND REPORT TO: Jay Kunt	BILLING INFORMATION	AINE VIET
ADDRESS: ZISI MICHISAN TI. SHU/T)	BILL TO:	//0
TRUME la 926/2	ADDRESS:	
		4NX /20/
HONE: 949-261-1577	PHONE:	
FAX:	FAX: PO NO.:	1,0/0/
SAMPLE DESCRIPTION	SAMPLE SAMPLE SAMPLE CONTAINER PRESERV.] = 1/4/4/4
I-25-10	1/29/01 12:55 C./ SS ILB	/ X X
-/5	/ / 3:05 / /	
- 70	/ 13:10 / /	~
-30	/ 1/3:15 / /	×
-40	13320 / /	
os.	1 52:21	7
-60	13:30 C. 1 SS TCB	×
Z-25-W	13:50 M BAR NIEGO	× ×
I-25-W	13:50 W Now 14CC	3 X
D-7-35	1/29/01 15:25 801 55 22.6	X
SAMPLER: //ww	SHIPMENT METHOD:	AIRBILL NO:
REQUIRED TURNAROUND* 🗆 SAME DAY 🗀 24 HOURS		S DROUTINE DOTHER
DBY:	?	ω
SIGNATURE: Y by (10/	25W
PRINTED NAME COMPANY:	16 87 PRINTED NAMEROUMPANY:	TIME PRINTED NAME/COMPANY:
	2. RECEIVED BY:	DATE DATE
SIGNATURE: CMARKET	1-25-y SIGNATURE: Facealf	
PRINTED NAME/COMPANY: SAL	TMES-01 PRINTED NAME/COMPANY: S7Z	TWE 3 PRINTED NAME/COMPANY:

* RUSH TURNAROUND MAY REQUIRE SURCHARGE

SEVERN TRENT LABORATORIES
1721 South Grand Avenue
Santa Ana, CA 92705

Phone: (714) 258-8610 / Fax: (714) 258-0921

	Committed 1	
OTOTO	amitted To Four Success	

SEVERN TRENT LABORATORIES

CHAIN OF CUSTODY RECORD

TIME		PRINTED NAME/COMPANY:	⊢	16,77			7	MPANY	PRINTED NAME/COMPANY		7837	CMPANY: S'AL	PRINTED NAME/COMPANY
		NATURE:	+	10/22			Paccol to	Acc	SIGNATURE:		12901	ANTE OF	SIGNATURE:
DATE		3. RECEIVED BY:	3. RECI	, 	DAT			-	2. RECEIVED BY:	,	DATE		1. RECEIVED BY:
TIME		PRINTED NAME/COMPANY:	PRINTE	乃为			S/AC		PRINTED NAME/COMPANY		760-	OMPANY KJ	PRINTED NAME/COMPAN
		NATURE:	-	P-52-1	7		Ø	Z EST	SIGNATURE	10	12/	14 X 411	SIGNALURE: 1
DATE		3. RELINQUISHED BY:		H	DATE		4	1	2. RELINQUISHED B	<u>\</u>	DATE		1. RELINQUISHED BY:
		OTHER	INE TIME	D ROUTINE	AYS	🗆 10 DAYS	□ 5 DAYS	□ 72 HOURS		□ 48 HOURS	☐ 24 HOURS	☐ SAME DAY	REQUIRED TURNAROUND
		AIRBILL NO.:	,					ETHOD:	SHIPMENT METHAD:			lui	SAMPLER: 7
					_								
										131			
				×		CC	LOA	W	16:00	109/01	_	RIWSIES	
				*	_	1727	1601	Σ	160,00			TRIP BUNK	
				\propto	_	TUS	55	54/	15,22			D-1-SS	
				×	/	TUB	55	Su !	15:30	1/29/61		D-1-45	
CAUTIONS	/ REMARKS/PRECAUTIONS	/////	/			R PRESE	CONTAINER PRESERV	SAMPLE MATRIX	SAMPLE TIME	SAMPLE DATE		SAMPLE DESCRIPTION	SAMPLE NO.
	\ \ 	' / / /			NUN		0.:	PO NO.:		FAX:		•	FAX:
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	////	(IBE					PHONE:		1251,192-54	PHONE: 94
LAB JOB NO.	/ / LAB J	<i>'</i>	2	4.	R OI								
	/	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	REC.		F C				3:	ADDRESS:		416 97612	LRUMA
			DUES!		LL. TAC					BILL TO:	stelas	Var	ADDRESS: Z/
	/////	////	MET		AINI		MATION	BILLING INFORMATION	BILLING			TO: Jay Knight	SEND REPORT TO:
		///	HOD		ERS	101	755040	$\mathcal{L} \setminus \mathcal{L}$	PROJECT NAME/NUMBER:	PROJEC1	۲	Kennepy Junks	COMPANY: /
							MATION	PROJECT INFORMATION	PROJEC		-	CUSTOMER INFORMATION	

* RUSH TURNAROUND MAY REQUIRE SURCHARGE

Phone: (714) 258-8610 / Fax: (714) 258-0921 SEVERN TRENT LABORATORIES 1721 South Grand Avenue Santa Ana, CA 92705

Client Sample ID: D-I-35

GC/MS Volatiles

Lot-Sample #...: E1A290176-027 Work Order #...: DVADW1AA Matrix......: SOLID Date Sampled...: 01/29/01 15:25 Date Received..: 01/29/01 17:35 MS Run #.....: 1032224

Dilution Factor: 1

Analyst ID....: 999998 Instrument ID..: MSD

Method.....: SW846 8260B

REPORTING RESULT UNITS MDL PARAMETER LIMIT 1.0 Dichlorodifluoromethane ND 10 ug/kg Chloromethane 3.0 ND 10 ug/kg 2.0 ND 10 Vinyl chloride ug/kg 2.0 Bromomethane ND 10 ug/kg ND 10 ug/kg 2.0 Chloroethane 10 ug/kg 2.0 Trichlorofluoromethane ND ND 100 ug/kg 30 Acrolein 5.0 ug/kg 2.0 1.1-Dichloroethene ND ug/kg 5.0 Iodomethane ND 10 ND 25 ug/kg 15 Acetone 5.0 2.0 ND ug/kg Carbon disulfide 5.0 ug/kg 3.0 Methylene chloride 6.5 5.0 ug/kg 2.0 ND trans-1,2-Dichloroethene 30 Acrylonitrile ND 50 ug/kg Methyl tert-butyl ether ИD 5.0 ug/kg 1.0 5.0 ug/kg 1.0 1,1-Dichloroethane ND 5.0 ND 10 ug/kg Vinyl acetate 5.0 2.0 ug/kg 2,2-Dichloropropane ND 2.0 cis-1,2-Dichloroethene ND 5.0 ug/kg ND 25 ug/kg 15 2-Butanone 5.0 ug/kg 1.0 Bromochloromethane ND 1.0 3.9 J 5.0 ug/kg Chloroform ND 20 ug/kg 10 Tetrahydrofuran 5.0 ug/kg 1.0 1,1,1-Trichloroethane ND 1,1-Dichloropropene ND 5.0 ug/kg 1.0 5.0 ug/kg 1.0 Carbon tetrachloride ND 2.0 5.0 Benzene ND ug/kg 1.0 1,2-Dichloroethane ND 5.0 ug/kg 2.0 ND 5.0 Trichloroethene ug/kg 1.0 1,2-Dichloropropane ND 5.0 ug/kg ug/kg 1.0 Bromodichloromethane ND 5.0 ug/kg 5.0 2-Chloroethyl vinyl ether ND 10 5.0 ug/kg 1.0 ND cis-1,3-Dichloropropene 25 ug/kg 10 4-Methyl-2-pentanone ND 2.0 ND 5.0 ug/kg Toluene trans-1,3-Dichloropropene ND 5.0 ug/kg 3.0 5.0 ug/kg 3.0 ND 1,1,2-Trichloroethane

(Continued on next page)

Client Sample ID: D-I-35

GC/MS Volatiles

Lot-Sample #:	E1A290176-027	Work Order	#: DVADW1AA	Matrix	: SOLID
---------------	---------------	------------	-------------	--------	---------

		REPORTIN	īG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Tetrachloroethene	ND	5.0	ug/kg	2.0
2-Hexanone	ND	25	ug/kg	10
Dibromochloromethane	ND	5.0	ug/kg	5.0
1,2-Dibromoethane	ND	5.0	ug/kg	3.0
Chlorobenzene	ND	5.0	ug/kg	2.0
Ethylbenzene	ND	5.0	ug/kg	2.0
Xylenes (total)	ND	5.0	ug/kg	3.0
Styrene	ND	10	ug/kg	2.0
Bromoform	ND	5.0	ug/kg	3.0
Isopropylbenzene	ND	5.0	ug/kg	2.0
p-Isopropyltoluene	ND	5.0	ug/kg	2.0
Bromobenzene	ND	5.0	ug/kg	2.0
1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg	3.0
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	3.0
1,2,3-Trichloropropane	ND	5.0	ug/kg	3.0
n-Propylbenzene	ND	5.0	ug/kg	2.0
2-Chlorotoluene	ND	5.0	ug/kg	2.0
4-Chlorotoluene	ND	5.0	ug/kg	2.0
1,3,5-Trimethylbenzene	ND	5.0	ug/kg	2.0
tert-Butylbenzene	ND	5.0	ug/kg	2.0
1,2,4-Trimethylbenzene	ND	5.0	ug/kg	2.0
sec-Butylbenzene	ND	5.0	ug/kg	2.0
1,3-Dichlorobenzene	ND	5.0	ug/kg	2.0
1,4-Dichlorobenzene	ND	5.0	ug/kg	2.0
1,2-Dichlorobenzene	ND	5.0	ug/kg	2.0
n-Butylbenzene	ND	5.0	ug/kg	2.0
1,2-Dibromo-3-chloro-	ND	10	ug/kg	3.0
propane				
1,2,4-Trichloro-	ND	5.0	ug/kg	2.0
benzene				
Hexachlorobutadiene	ND	5.0	ug/kg	2.0
1,2,3-Trichlorobenzene	ND	5.0	ug/kg	2.0
	PERCENT	RECOVERY	.	
SURROGATE	RECOVERY	LIMITS	•	
Bromofluorobenzene	91	(70 - 13	10)	
1,2-Dichloroethane-d4	110	(60 - 14		
Toluene-d8	87	(70 - 13		

NOTE(S):

F. Estimated result. Result is less than RL.

Client Sample ID: D-I-45

GC/MS Volatiles

Lot-Sample #...: E1A290176-028 Work Order #...: DVADX1AA Matrix......: SOLID Date Sampled...: 01/29/01 15:30 Date Received..: 01/29/01 17:35 MS Run #.....: 1033085

 Prep Date.....:
 02/01/01
 Analysis Date..:
 02/01/01

 Prep Batch #...:
 1033222
 Analysis Time..:
 11:11

Dilution Factor: 1

Analyst ID....: 999998 Instrument ID..: MSD

Method..... SW846 8260B

		REPORTIN	1G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Dichlorodifluoromethane	ND	10	ug/kg	1.0
Chloromethane	ND	10	ug/kg	3.0
Vinyl chloride	ND	10	ug/kg	2.0
Bromomethane	ND	10	ug/kg	2.0
Chloroethane	ND	10	ug/kg	2.0
Trichlorofluoromethane	ND	10	ug/kg	2.0
Acrolein	ND	100	ug/kg	30
1,1-Dichloroethene	ND	5.0	ug/kg	2.0
Iodomethane	ND	10	ug/kg	5.0
Acetone	ND	25	ug/kg	15
Carbon disulfide	ND	5.0	ug/kg	2.0
Methylene chloride	5.8	5.0	ug/kg	3.0
trans-1,2-Dichloroethene	ND	5.0	ug/kg	2.0
Acrylonitrile	ND	50	ug/kg	30
Methyl tert-butyl ether	ND	5.0	ug/kg	1.0
1,1-Dichloroethane	ND	5.0	ug/kg	1.0
Vinyl acetate	ND	10	ug/kg	5.0
2,2-Dichloropropane	ND	5.0	ug/kg	2.0
cis-1,2-Dichloroethene	ND	5.0	ug/kg	2.0
2-Butanone	ND	25	ug/kg	15
Bromochloromethane	ND	5.0	ug/kg	1.0
Chloroform	16	5.0	ug/kg	1.0
Tetrahydrofuran	ND	20	ug/kg	10
1,1,1-Trichloroethane	ND	5.0	ug/kg	1.0
1,1-Dichloropropene	ND	5.0	ug/kg	1.0
Carbon tetrachloride	ND	5.0	ug/kg	1.0
Benzene	ND	5.0	ug/kg	2.0
1,2-Dichloroethane	ND	5.0	ug/kg	1.0
Trichloroethene	ND	5.0	ug/kg	2.0
1,2-Dichloropropane	ND	5.0	ug/kg	1.0
Bromodichloromethane	ND	5.0	ug/kg	1.0
2-Chloroethyl vinyl ether	ND	10	ug/kg	5.0
cis-1,3-Dichloropropene	ND	5.0	ug/kg	1.0
4-Methyl-2-pentanone	ND	25	ug/kg	10
Toluene	ND	5.0	ug/kg	2.0
trans-1,3-Dichloropropene	ND	5.0	ug/kg	3.0
1,1,2-Trichloroethane	ND	5.0	ug/kg	3.0

(Continued on next page)

Client Sample ID: D-I-45

GC/MS Volatiles

Lot-Sample #: E1A290176-02	Work Order #: DVADX1AA	Matrix SOLID
----------------------------	------------------------	--------------

		REPORTIN	ſĠ	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Tetrachloroethene	ND	5.0	ug/kg	2.0
2-Hexanone	ND	25	ug/kg	10
Dibromochloromethane	ND	5.0	ug/kg	5.0
1,2-Dibromoethane	ND	5.0	ug/kg	3.0
Chlorobenzene	ND	5.0	ug/kg	2.0
Ethylbenzene	ND	5.0	ug/kg	2.0
Xylenes (total)	ND	5.0	ug/kg	3.0
Styrene	ND	10	ug/kg	2.0
Bromoform	NĎ	5.0	ug/kg	3.0
Isopropylbenzene	ND	5.0	ug/kg	2.0
p-Isopropyltoluene	ND	5.0	ug/kg	2.0
Bromobenzene	ND	5.0	ug/kg	2.0
1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg	3.0
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	3.0
1,2,3-Trichloropropane	ND	5.0	ug/kg	3.0
n-Propylbenzene	ND	5.0	ug/kg	2.0
2-Chlorotoluene	ND	5.0	ug/kg	2.0
4-Chlorotoluene	ND	5.0	ug/kg	2.0
1,3,5-Trimethylbenzene	ND	5.0	ug/kg	2.0
tert-Butylbenzene	ND	5.0	ug/kg	2.0
1,2,4-Trimethylbenzene	ND	5.0	ug/kg	2.0
sec-Butylbenzene	ND	5.0	ug/kg	2.0
1,3-Dichlorobenzene	ND	5.0	ug/kg	2.0
1,4-Dichlorobenzene	ND	5.0	ug/kg	2.0
1,2-Dichlorobenzene	ND	5.0	ug/kg	2.0
n-Butylbenzene	ND	5.0	ug/kg	2.0
1,2-Dibromo-3-chloro-	ND	10	ug/kg	3.0
propane			5 * 5	
1,2,4-Trichloro-	ND .	5.0	ug/kg	2.0
benzene				
Hexachlorobutadiene	ND	5.0	ug/kg	2.0
1,2,3-Trichlorobenzene	ND	5.0	ug/kg	2.0
			_	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	94	(70 - 1 3	0)	
1,2-Dichloroethane-d4	103	(60 - 14	0)	
Toluene-d8	89	(70 - 13	0)	

Client Sample ID: D-I-55

GC/MS Volatiles

Lot-Sample #...: E1A290176-029 Work Order #...: DVAD01AA Matrix.....: SOLID Date Sampled...: 01/29/01 15:35 Date Received..: 01/29/01 17:35 MS Run #.....: 1033085

Prep Date....: 02/01/01 Analysis Date..: 02/01/01

Prep Batch #...: 1033222 Analysis Time..: 11:42

Dilution Factor: 1

Analyst ID....: 999998 Instrument ID..: MSD

Method....: SW846 8260B

REPORTING

		1,55		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Dichlorodifluoromethane	ND	10	ug/kg	1.0
Chloromethane	MD	10	ug/kg	3.0
Vinyl chloride	ND	10	ug/kg	2.0
Bromomethane	ND	10	ug/kg	2.0
Chloroethane	ND	10	ug/kg	2.0
Trichlorofluoromethane	ND	10	ug/kg	2.0
Acrolein	ND	100	ug/kg	30
1,1-Dichloroethene	ND	5.0	ug/kg	2.0
Iodomethane	ND	10	ug/kg	5.0
Acetone	ND	25	ug/kg	15
Carbon disulfide	ND	5.0	ug/kg	2.0
Methylene chloride	5.0	5.0	ug/kg	3.0
trans-1,2-Dichloroethene	ND	5.0	ug/kg	2.0
Acrylonitrile	ND	50	ug/kg	30
Methyl tert-butyl ether	ND	5.0	ug/kg	1.0
1,1-Dichloroethane	ND	5.0	ug/kg	1.0
Vinyl acetate	ND	10	ug/kg	5.0
2,2-Dichloropropane	ND	5.0	ug/kg	2.0
cis-1,2-Dichloroethene	ND	5.0	ug/kg	2.0
2-Butanone	ND	25	ug/kg	15
Bromochloromethane	ND	5.0	ug/kg	1.0
Chloroform	12	5.0	ug/kg	1.0
Tetrahydrofuran	ND	20	ug/kg	10
1,1,1-Trichloroethane	ND	5.0	ug/kg	1.0
1,1-Dichloropropene	ND	5.0	ug/kg	1.0
Carbon tetrachloride	ND	5.0	ug/kg	1.0
Benzene	MD	5.0	ug/kg	2.0
1,2-Dichloroethane	ND	5.0	ug/kg	1.0
Trichloroethene	ND	5.0	ug/kg	2.0
1,2-Dichloropropane	ND	5.0	ug/kg	1.0
Bromodichloromethane	ND	5.0	ug/kg	1.0
2-Chloroethyl vinyl ether	ND	10	ug/kg	5.0
cis-1,3-Dichloropropene	ND	5.0	ug/kg	1.0
4-Methyl-2-pentanone	ND	25	ug/kg	10
Toluene	ND	5.0	ug/kg	2.0
trans-1,3-Dichloropropene	ND	5.0	ug/kg	3.0
1,1,2-Trichloroethane	ND	5.0	ug/kg	3.0

(Continued on next page)

Client Sample ID: D-I-55

GC/MS Volatiles

Lot-Sample #...: E1A290176-029 Work Order #...: DVAD01AA Matrix.....: SOLID

		REPORTIN	ſĠ	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Tetrachloroethene	ND	5.0	ug/kg	2.0
2-Hexanone	ND	25	ug/kg	10
Dibromochloromethane	ND	5.0	ug/kg	5.0
1,2-Dibromoethane	ND	5.0	ug/kg	3.0
Chlorobenzene	ND	5.0	ug/kg	2.0
Ethylbenzene	ND	5.0	ug/kg	2.0
Xylenes (total)	ND	5.0	ug/kg	3.0
Styrene	ND	10	ug/kg	2.0
Bromoform	ND	5.0	ug/kg	3.0
Isopropylbenzene	ND	5.0	ug/kg	2.0
p-Isopropyltoluene	ND	5.0	ug/kg	2.0
Bromobenzene	ND	5.0	ug/kg	2.0
1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg	3.0
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	3.0
1,2,3-Trichloropropane	ND	5.0	ug/kg	3.0
n-Propylbenzene	ND	5.0	ug/kg	2.0
2-Chlorotoluene	ND	5.0	ug/kg	2.0
4-Chlorotoluene	ND	5.0	ug/kg	2.0
1,3,5-Trimethylbenzene	ND	5.0	ug/kg	2.0
tert-Butylbenzene	ND	5.0	ug/kg	2.0
1,2,4-Trimethylbenzene	ND	5.0	ug/kg	2.0
sec-Butylbenzene	ND	5.0	ug/kg	2.0
1,3-Dichlorobenzene	ND	5.0	ug/kg	2.0
1,4-Dichlorobenzene	ND	5.0	ug/kg	2.0
1,2-Dichlorobenzene	ND	5.0	ug/kg	2.0
n-Butylbenzene	ND	5.0	ug/kg	2.0
1,2-Dibromo-3-chloro- propane	ND	10	ug/kg	3.0
1,2,4-Trichloro- benzene	ND	5.0	ug/kg	2.0
Hexachlorobutadiene	ND	5.0	ug/kg	2.0
1,2,3-Trichlorobenzene	ИD	5.0	ug/kg	2.0
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	94	(70 - 13		
1,2-Dichloroethane-d4	106	(60 - 14	0)	

(70 - 130)

89

Toluene-d8

Appendix E Boring D-1 Boring Log **Boring Log**

Kennedy/Jenks Consultants

			TOR				Kennedy/Jenks Consultants
ROKI	Fea	ture	Numb	er: Pa	rcel D	DDW1-5	Boring Name D-1
	We	st H	PANY azmat			DRILLER Steve	Project Name Boeing C-6, Parcel C
DRILL	ING Ho l	METI low	IOD (S) Stem A	Luger		DRILL BIT (S)	Project Number 004032.01
DEPT	H TO	WAT Enc	ER (ft. ounter) red			ELEVATION (ft. MSL) TOTAL DEPTH (ft.)
LOGG	ED I	BY			· • • · · ·		DATE STARTED DATE COMPLETED 11-29-01
	SÃ	MPLES	Space	Depth (feet)	Graphic Log USCS	Munsell Color	SOIL DESCRIPTION AND DRILLING REMARKS
X Driven Recove	Collected	Blows per 6"	Head Spac Reading (ppm)	(reet)		Color	
				-			_ 0-35' logged from cuttings
				-			-
				5-	ML	10YR 4/4	Sandy SILT to Clayey SILT: dark yellowish brown, damp, stiff
8				-			F
				-			}
XX				[-			<u> </u>
				10-			
				10.			
				-			-
] -			}
8				-			-
				15-			<u>}</u>
				-			<u> </u>
				-			
8				20-			1
8				~ .	<u> </u>		-
				-	<u> </u>		}
				-	<u> </u>		}
X				-			<u>}</u>
8				25-	 		<u>†</u>
X X				-			
				.			-
				30-	411111111		}
				-			}
8				-			<u>}</u>
				-			<u> </u>
	XX			35-	SM	2.5Y 5/6	Silty SAND: light olive brown, very fine to fine sand, damp, medium dense, trace
				33.			amounts of iron oxide staining (orange)
							-
\aleph				-			-
X				-			}
X				40-			<u>}</u>
8				-			<u>}</u>
\otimes							

		-6	Log	_	T			Kennedy/Jenks Consultants
	SA	MPLES						Boring Name D-1
Driven Recovered	Collected	Biowe per 6*	Head Space Reading (ppm)	Depth (feet)	Graphic Log	USCS Log	Munsell Color	Project Name Boeing C-6, Parcel C
ž ž	Col	Bio	Rea (pp	40-	 			Project Number 004032.01
				-		SM		_ Silty SAND: continued
	**			45 -		SP	2.5Y 5/6	SAND: light olive brown, very fine, dense, some iron staining (orange)
				50 -		SP	2.5Y 5/6	SAND: light olive brown, very fine to medium sand, damp, dense, some iron staining
	**	i		- - - 55 -				- Total Doubh - 55!
- - -				-				Total Depth = 55'
- -				60 -				- - -
-				65 -				- - -
- - - -				70 -				
- - - -				75 -				- - - -
- - -				80 -				- - - -
-				- 85 -				- - -

Appendix F Risk Assessment Discussion and Calculations

Risk Assessment Discussion and Calculations

To evaluate the human health risks associated with the various deep soil residual impacts, post demolition risk assessment calculations were performed to supplement the initial post-demolition risk assessment (Integrated 2000). The following additional potential exposure pathways were evaluated for risk assessment calculations after incorporating the January 2001 investigation results:

- inhalation of VOCs in indoor air from upward VOC vapor migration from deep soil into onsite buildings
- inhalation of VOCs in indoor air from upward VOC vapor migration from groundwater into onsite buildings
- inhalation of VOCs in indoor air due to VOC migration from deep soil leachate migration to groundwater and subsequent VOC vapor migration from groundwater into indoor air

Potential further degradation of groundwater due to VOC leaching from soil to groundwater was also evaluated.

The results of the additional risk assessment and the groundwater protection assessment activities are presented below.

INHALATION OF INDOOR AIR – VOC VAPOR MIGRATION FROM SOIL INTO INDOOR AIR (INCLUDING SOIL IMPACTS DEEPER THAN 25 FEET BGS)

The highest previously estimated excess lifetime cancer risk and hazard index associated with potential exposure by the onsite commercial/industrial worker to chloroform from vapor migration into indoor air, as presented in the post-demolition risk assessment, is 4.25 x 10⁻¹⁰ and 0.0000069, respectively. These values are based on an estimated 95 percent upper confidence limit (95% UCL) concentration of chloroform. Since the chloroform concentrations detected during the January 2001 investigation activities are less than the highest concentration reported during the June/July 1999 investigation activities, an estimated 95% UCL concentration for chloroform after incorporating the January 2001 data would be less than the previously estimated 95% UCL concentration. Thus, the associated estimated excess lifetime cancer risk and hazard index after incorporating the January 2001 investigation results would be less than the previously estimated values.

An estimated excess lifetime cancer risk was calculated for possible methylene chloride vapor migration into indoor air for the onsite commercial/industrial worker using the County of San Diego Department of Environmental Health (DEH) vapor migration model and input parameter values presented in the post-demolition risk assessment. The DEH model has been approved by the RWQCB and the OEHHA for use during the proposed Parcel C risk assessments. The model results, presented in Appendix G, indicate that the estimated excess lifetime cancer risk and hazard index for possible methylene chloride vapor migration into indoor air is 3.0×10^{-10} and 0.0000022, respectively. Adding the previously estimated risk for VOC migration into

indoor air to the estimated risk for methylene chloride results in a risk of 7.7×10^{-10} . This risk estimate is approximately 13,000 times less of the OEHHA-approved acceptable risk level of 1×10^{-5} .

INHALATION OF INDOOR AIR – VOC VAPOR MIGRATION FROM GROUNDWATER INTO INDOOR AIR

As previously indicated no source of chlorinated VOCs originating from the subject parcel has been identified. Assuming that the VOC source in soil is attributed to VOC migration from groundwater, it is assumed that the estimated risk associated with upward VOC migration from groundwater provides an estimate of the risk associated with upward VOC migration from impacted soil.

Excess lifetime cancer risk and hazard index associated with the vapor migration pathway for the onsite commercial/industrial worker were estimated using the DEH vapor migration model and the highest chloroform, PCE, and methylene chloride concentrations in groundwater obtained from either the most recent samples collected from groundwater monitoring well XMW-09, situated on the subject parcel, or downgradient monitoring wells TMW-11 through TMW-14. The model results are presented in Appendix G, and a summary of the results is presented in Table F-1.

As shown in Table F-1, both the estimated excess cancer risk and estimated hazard index are orders of magnitude less than the risk thresholds of 1.0 x 10⁻⁵ and 1.0, respectively. Thus, the existing chloroform and PCE concentrations in groundwater beneath the southern portion of the subject parcel do not pose an indoor air health risk greater than acceptable risk levels.

Groundwater Quality Impact Assessment

The objective of the groundwater protection assessment is to evaluate whether existing chemical concentrations in onsite soils have the potential to degrade existing groundwater quality. Even though shallow groundwater beneath and in proximity to subject parcel is not used as a domestic water supply, the RWQCB requested, as a conservative measure, that an evaluation be conducted of potential downward chemical migration from soil resulting in possible degradation of the Bellflower aquitard, the most shallow water-bearing zone. The estimated chemical concentrations in groundwater were compared to California drinking water standards, specifically MCLs. This evaluation conservatively and unrealistically assumes that the Bellflower aquitard is a part of the underlying aquifers providing domestic water supply. As described below, the assessment was conducted assuming a conservative scenario regarding chemical migration and mixing in groundwater following approved EPA and RWQCB methodology and assumptions.

The maximum compound of potential concern (COPC) concentrations in soil were compared to site-specific soil screening levels (SSLs) derived from primary or secondary MCLs. Initial site-specific SSLs were derived using the following formula presented in Section 2.5 of the EPA document entitled *Soil Screening Guidance: Technical Background Document (TBD)*, dated July 1996:

Initial SSL = MCL
$$[(K_{oc} * f_{oc}) + ((O_w + O_a *H')/P_b)]$$
 (Equation 1)

Where:

Initial SSL = soil screening level, mg/kg;

MCL = maximum contaminant level, mg/L;

 K_{∞} = soil organic carbon-water partition coefficient, L/kg;

 f_{oc} = organic carbon content of soil, kg/kg;

 O_w = water-filled soil porosity, L_{water}/L_{soil} ;

 O_a = air-filled soil porosity, L_{air}/L_{soil} ;

H' = Henry's law constant, dimensionless; and

 $P_b = dry soil bulk density, kg/L.$

Site-specific geotechnical parameters are presented in Table F-2. The above equation is a partitioning formula, which does not account for chemical attenuation during migration in soil or mixing with groundwater. To better represent contaminant migration in the soil column, an attenuation factor of 3 was applied to the initial SSLs for chloroform, PCE, and methylene chloride. This attenuation factor was obtained from T5-14: Average Attenuation Factor for Different Distance above Ground Water and Lithology presented in the LARWQCB's May 1996 *Interim Site Assessment & Cleanup Guidebook* (the Guidebook), assuming site-specific average soil particle size distributions of 34 percent sand, 54 percent silt, and 13 percent clay (Table F-3), and a distance of 40 feet from soil impacts to the groundwater table. This distance is considered to be appropriate because the depth to groundwater at the site is approximately 65 feet bgs, and the maximum COPC concentrations were detected at approximately 25 feet bgs.

An EPA default dilution attenuation factor (DAF) of 20 was applied to the initial SSL to account for limited groundwater mixing. This EPA default value is presented in the above-referenced July 1996 EPA document, and was used by EPA to develop generic SSLs. The resulting site-specific SSL is equal to the initial SSL (assuming no soil attenuation or groundwater mixing) multiplied by the product of a soil attenuation factor (e.g. 3) and a groundwater mixing factor of 20.

The calculation of site-specific SSLs for COPCs that have promulgated MCLs is presented in Table F-4. A comparison of the calculated site-specific SSLs with the maximum COPC concentrations in soil is also presented in Table F-4.

The maximum chemical concentrations in onsite soil do not exceed the site-specific groundwater protection concentrations (i.e., site-specific SSLs). Thus, chemical concentrations in vadose soils beneath the subject parcel do not to pose a threat to groundwater quality via leaching from soil to groundwater.

INHALATION OF INDOOR AIR – VOC MIGRATION FROM SOIL LEACHATE MIGRATION TO GROUNDWATER AND SUBSEQUENT VOC VAPOR MIGRATION FROM GROUNDWATER INTO INDOOR AIR

VOCs in soil may leach into groundwater and subsequently volatilize from groundwater and, through upward diffusion, migrate through the soil column into indoor air. A simple

comparison between estimated maximum VOC concentrations in groundwater, due to chemical leaching to groundwater, and measured VOC concentrations in groundwater was conducted to assess whether the existing VOC concentrations in soil may further degrade existing groundwater quality.

The SSL equation (Equation 1) was used to estimate maximum VOC concentrations in pore water by substituting the SSL parameter with maximum onsite soil concentrations in the equation to derive the maximum pore water concentration instead of the MCL:

$$C_{pw} = C_s / [(K_{\infty} * f_{\infty}) + ((O_w + O_a * H')/P_b)]$$
 (Equation 2)

Where:

 C_{pw} = maximum VOC concentration in pore water, mg/L; and C_s = maximum VOC concentration in soil, mg/kg.

The estimated maximum VOC concentration in groundwater was then derived by applying the soil attenuation factor of 3 and the EPA DAF of 20 to the maximum pore water concentration. The resulting estimated maximum VOC concentrations in groundwater are presented in Table F-5. In Table F-6, these concentrations are compared to the measured VOC concentrations in groundwater from the closest groundwater monitoring well(s) on or in proximity to the subject parcel.

As shown in Table F-6, the estimated maximum groundwater concentrations for chloroform, PCE, and methylene chloride are all less than the most recently measured concentrations for groundwater samples collected from the monitoring well situated closest to the borings with the greatest onsite soil concentrations of these chemicals. Since, the VOC concentrations from these measured groundwater samples do not pose health risks greater than acceptable levels (see Table F-1), the estimated maximum groundwater concentrations would also not pose health risks greater than acceptable levels from inhalation of indoor air due to vapor migration from groundwater into indoor air.

CUMULATIVE HUMAN HEALTH RISKS

As indicated in the previous sections, the following additional potential exposure pathways were evaluated after incorporating the January 2001 investigation results:

- inhalation of VOCs in indoor air from upward VOC vapor migration from deep soil into onsite buildings
- inhalation of VOCs in indoor air from upward VOC vapor migration from groundwater into onsite buildings
- inhalation of VOCs in indoor air due to VOC migration from deep soil leachate migration to groundwater and subsequent VOC vapor migration from groundwater into indoor air

The risks associated with the above-listed exposure pathways, and the estimated risks to potential onsite receptors as presented in the post-demolition risk assessment are summarized in Table F-7. As shown in Table F-7, adding the estimated risks from the above-listed pathways to the estimated risks to the potential on-site receptors do not result in risks greater than the OEHHA-approved acceptable risk levels.

Table F-1
Summary of Risk Associated with VOC Vapor Migration from Groundwater

Chemical	Closest Groundwater Monitoring Well	Most Recent Date Sampled	Groundwater Monitoring Well Concentration (mg/L)	Excess Cancer Risk	Estimated Hazard Index
Chloroform	XMW-09	October 12, 2000	1.500*	3.8 x 10 ⁻⁸	0.000061
PCE	XMW-09	October 12, 2000	0.055*	5.2 x 10 ⁻⁹	0.000070
Methylene chloride	TMW-12	January 25, 2001	0.004**	1.1 x 10 ⁻¹¹	0.000000077
Total				4.3 x 10 ⁻⁸	0.00013

^{*} Data obtained from K/J from groundwater sample collected on October 12, 2000 (laboratory report presented in Appendix B).

^{**} Methylene chloride results for groundwater sample collected from XMW-09 on October 12, 2000 was <0.005 mg/L. Groundwater monitoring wells located downgradient of XMW-09 include TMW-11 through TMW-14 and TMW-18. During the most recent groundwater sampling event (January 25, 2001), TWM-14 exhibited a methylene chloride concentration of 0.004 mg/L (laboratory report presented in Appendix C).

Table F-2. Site-specific Geotechnical Parameters at the BRC Former C-6 Facility

Date Sampled	Depth	Sieve Analysis	Dry Bulk Density	Moisture Content	Total Porosity	Air-filled Porosity	Water-filled Porosity	тос*	f _{oc}
	(feet has)	(Soil Type)	(ka/L)	(percent by	(fraction by	(fraction by	(fraction by	(ma/ka)	(fraction by weight)
									0.0005
									0.0024
1/29/2001	5	Silt	1.34	17.8	0.49	0.26	0.24	690	0.0007
			1.43	18.0	0.46	0.20	0.26	1187	0.0012
1/29/2001	20	Silt	1.54	17.5	0.42	0.15	0.27	330	0.0003
1/29/2001	20	Silt	1.55	17.0	0.41	0.15	0.26	430	0.0004
1/29/2001	20	Silt	1.37	20.2	0.48	0.20	0.28	410	0.0004
			1.49	18.2	0.44	0.17	0.27	390	0.0004
1/29/2001	50	Fine sand	1.35	4.4	0.51	0.45	0.06	230	0.0002
1/29/2001	50	Fine sand	1.36	19.5	0.49	0.22	0.26	560	0.0006
1/29/2001	50	Silt	1.34	24.3	0.51	0.18	0.32	470	0.0005
			1.35	16.1	0.50	0.28	0.22	420	0.0004
	1/29/2001 1/29/2001 1/29/2001 1/29/2001 1/29/2001 1/29/2001 1/29/2001	(feet bgs) 1/29/2001 5 1/29/2001 5 1/29/2001 20 1/29/2001 20 1/29/2001 20 1/29/2001 50 1/29/2001 50	(feet bgs) (Soil Type) 1/29/2001 5 Silt 1/29/2001 5 Silt 1/29/2001 20 Silt 1/29/2001 20 Silt 1/29/2001 20 Silt 1/29/2001 20 Silt 1/29/2001 50 Fine sand 1/29/2001 50 Fine sand	(feet bgs) (Soil Type) (kg/L) 1/29/2001 5 Silt 1.51 1/29/2001 5 Silt 1.44 1/29/2001 5 Silt 1.34 1/29/2001 20 Silt 1.54 1/29/2001 20 Silt 1.55 1/29/2001 20 Silt 1.37 1/29/2001 50 Fine sand 1.35 1/29/2001 50 Fine sand 1.36 1/29/2001 50 Silt 1.34	(feet bgs) (Soil Type) (kg/L) (percent by weight) 1/29/2001 5 Silt 1.51 15.9 1/29/2001 5 Silt 1.44 20.3 1/29/2001 5 Silt 1.34 17.8 1/29/2001 20 Silt 1.54 17.5 1/29/2001 20 Silt 1.55 17.0 1/29/2001 20 Silt 1.37 20.2 1/29/2001 50 Fine sand 1.35 4.4 1/29/2001 50 Fine sand 1.36 19.5 1/29/2001 50 Silt 1.34 24.3	(feet bgs) (Soil Type) (kg/L) (percent by weight) (fraction by volume) 1/29/2001 5 Silt 1.51 15.9 0.43 1/29/2001 5 Silt 1.44 20.3 0.46 1/29/2001 5 Silt 1.34 17.8 0.49 1/29/2001 20 Silt 1.54 17.5 0.42 1/29/2001 20 Silt 1.55 17.0 0.41 1/29/2001 20 Silt 1.37 20.2 0.48 1/29/2001 50 Fine sand 1.35 4.4 0.51 1/29/2001 50 Fine sand 1.36 19.5 0.49 1/29/2001 50 Silt 1.34 24.3 0.51	(feet bgs) (Soil Type) (kg/L) (percent by weight) (fraction by volume) (fraction by volume) 1/29/2001 5 Silt 1.51 15.9 0.43 0.19 1/29/2001 5 Silt 1.44 20.3 0.46 0.16 1/29/2001 5 Silt 1.34 17.8 0.49 0.26 1/29/2001 20 Silt 1.54 17.5 0.42 0.15 1/29/2001 20 Silt 1.55 17.0 0.41 0.15 1/29/2001 20 Silt 1.37 20.2 0.48 0.20 1/29/2001 50 Fine sand 1.35 4.4 0.51 0.45 1/29/2001 50 Fine sand 1.36 19.5 0.49 0.22 1/29/2001 50 Silt 1.34 24.3 0.51 0.18	(feet bgs) (Soil Type) (kg/L) (percent by weight) (fraction by volume) (fraction by volume) (fraction by volume) (fraction by volume) 1/29/2001 5 Silt 1.51 15.9 0.43 0.19 0.24 1/29/2001 5 Silt 1.44 20.3 0.46 0.16 0.29 1/29/2001 5 Silt 1.34 17.8 0.49 0.26 0.24 1/29/2001 20 Silt 1.54 17.5 0.42 0.15 0.27 1/29/2001 20 Silt 1.55 17.0 0.41 0.15 0.26 1/29/2001 20 Silt 1.37 20.2 0.48 0.20 0.28 1/29/2001 50 Fine sand 1.35 4.4 0.51 0.45 0.06 1/29/2001 50 Fine sand 1.36 19.5 0.49 0.22 0.26 1/29/2001 50 Silt 1.34 24.3 0.51 0.18	(feet bgs) (Soil Type) (kg/L) (percent by weight) (fraction by volume) (fraction by volume) (fraction by volume) (mg/kg) 1/29/2001 5 Silt 1.51 15.9 0.43 0.19 0.24 520 1/29/2001 5 Silt 1.44 20.3 0.46 0.16 0.29 2350 1/29/2001 5 Silt 1.34 17.8 0.49 0.26 0.24 690 1/29/2001 20 Silt 1.54 17.5 0.42 0.15 0.27 330 1/29/2001 20 Silt 1.55 17.0 0.41 0.15 0.26 430 1/29/2001 20 Silt 1.37 20.2 0.48 0.20 0.28 410 1/29/2001 50 Fine sand 1.35 4.4 0.51 0.45 0.06 230 1/29/2001 50 Fine sand 1.36 19.5 0.49 0.22 0.26 560

The weighted fraction by weight assumes the 5-foot sample is representative of the top 20 feet, the 20-foot sample of depths between 20 and 50 feet, and the 50-foot sample of depths between 50 and 65 feet bgs.

Notes:

The air-filled porosity values were calculated from gravimetric data, not volumetric data.

^{*} f_{oc} = the weight fraction of organic carbon in soil = TOC/1,000,000

Table F-3. Soil Particle Size Distribution at BRC Former C-6 Facility

Sample ID						Pa	article Size Dist	tribution, wt	Percent		
	Date Sampled	Depth (feet bgs)	Sieve Analysis (Soil Type)	Median Grain	Gravel	Coarse	Sand S Medium	ize Fine	TOTAL	Silt	Clay
EIA200176 001 (L24.5)	1/29/2001	<u> </u>	Silt	(mm) 0.029					17.82	69.80	12.37
EIA290176-001 (I-34-5)		5	I =		0.00	0.00	0.22	17.60	1	l	1
EIA290176-010 (D-29-5)	1/29/2001	5	Silt	0.027	0.00	0.00	0.02	17.00	17.02	68.41	14.58
EIA29176-018 (I-25-5)	1/29/2001	5	Silt	0.026	0.00	0.00	0.39	14.86	15.25	68.78	15.97
Average									16.70	69.00	14.31
EIA290176-004 (I-34-20)	1/29/2001	20	Silt	0.032	0.00	0.00	0.00	31.19	31.19	54.83	13.99
EIA290176-012 (D-29-20)	1/29/2001	20	Silt	0.036	0.00	0.00	0.90	27.59	28.49	59.67	11.85
EIA29176-021 (I-25-20) Average	1/29/2001	20	Silt	0.020	0.00	0.00	0.00	11.21	11.21 23.63	69.07 61.19	19.72 15.19
Average									23.03	01.19	15.19
EIA290176-007 (I-34-50)	1/29/2001	50	Fine sand	0.151	0.00	0.00	0.57	79.33	79.90	17.39	2.71
EIA29176-015 (D-29-50)	1/29/2001	50	Fine sand	0.083	0.00	0.00	3.26	47.93	51.19	39.79	9.01
EIA29176-024 (I-25-50)	1/29/2001	50	Silt	0.027	0.00	0.00	0.04	21.27	21.31	64.99	13.70
Average									50.80	40.72	8.47

Weighted Fraction by weight (depths 25 to 65 feet bgs)

0.34	0.54	0.13
0.34	0.54	0.13

The weighted fraction by weight assumes the 5-foot sample is representative of the top 20 feet, the 20-foot sample of depths between 20 and 50 feet, and the 50-foot sample of depths between 50 and 65 feet bgs.

Table F-4. Comparison of Maximum Soil Concentrations to Site-specific SSLs Calculated at 25 Feet Below Ground Surface

CAS No.	Chemical	MCL (mg/L)	K _{oc} ^(1,2)	f _{oc} ⁽³⁾	K _d ⁽⁴⁾	H' ⁽¹⁾	O _w ⁽³⁾	O _a ⁽³⁾	$P_b^{(3)}$	Max. Residual Soil Concentration (mg/kg)	AF at D=40'	Site-specific SSL (mg/kg) at AF = 1		Site-specific SSL (mg/kg) at AF at D=40' and DAF=20	Max > SSL for at AF $_{ m T}$ at D=40' and DAF=20?
67-66-3 75-09-2 127-18-4	Chloroform Methylene Chloride Tetrachloroethene	na 5.00E-03 5.00E-03		 4.01E-04 4.01E-04	 				 1.44E+00 1.44E+00		3 3	9.57E-04 1.97E-03	2.70E-03 5.54E-03	5.39E-02 1.11E-01	No No

An SSL was not derived for chemicals that do not have promulgated primary MCLs. These chemicals were not included in the assessment of potential further degradation to groundwater quality.

AF = Average attenuation factor based on site lithology (distance to groundwater = 40 feet, 34% sand, 53% silt, and 13% clay).

na = not available

K_{oc} = soil organic carbon-water partition coefficient (L/kg)

f_{oc} = site-specific organic carbon content of soil (kg/kg)

 K_d = soil-water partition coefficient (L/kg), K_{oc} x f_{oc}

H' = dimensionless Henry's law constant

O_w = site-specific average water-filled porosity (by volume)

O_a = site-specific average air-filled porosity (by volume)

F_b = dry soil bulk density (kg/L)

⁽¹⁾ Obtained from EPA Region 9 preliminary remediation goal (PRG) physical-chemical data for volatile organic compounds, November 2000

⁽²⁾ Obtained from Risk Assessment Information System (RAIS) Toxicity & Chemical-Specific Factors Data Base, January 2001, http://risk.lsd.ornl.gov/cgi-bin/tox/TOX_select=csf

⁽³⁾ Site-specific average values

⁽⁴⁾ Obtained from EPA Soil Screening Guidance: Technical Background Document (TBD), EPA/540/R-95/128, July 1996, http://www.epa.gov/oerrpage/superfund/resources/soil/toc.htm

Table F-5. Derivation of Estimated Maximum VOC Concentrations in Groundwater at Parcel D Using a Site-specific SSL Equation

CAS No.	Chemical	Max. Residual Soi Concentration (mg/kg)	I 95%UCL Residual Soil Concentration (mg/kg)	K _{oc} ⁽¹⁾	f _{oc} ⁽²⁾	K _d ⁽³⁾	H' ⁽¹⁾	O _w (2)	O _a ⁽²⁾	P _b ⁽²⁾	Pore Water Conc. (mg/L)	Groundwater Conc. (mg/L) = Pore Water Conc. / AF / DAF
67-66-3	Chloroform	3.30E-01	4.31E-02	5.3E+01	4.01E-04		1.5E-01	2.50E-01	2.12E-01	1.44E+00	1.5E+00	2.5E-02
127-18-4	Tetrachloroethene	4.70E-02	8.60E-03	2.7E+02	4.01E-04		7.5E-01	2.50E-01	2.12E-01	1.44E+00	1.2E-01	2.0E-03
75-09-2	Methylene chloride	6.80E-03		1.0E+01	4.01E-04		9.0E-02	2.50E-01	2.12E-01	1.44E+00	3.6E-02	5.9E-04

K_{oc} = soil organic carbon-water partition coefficient (L/kg)

f_{oc} = organic carbon content of soil (kg/kg)

 K_d = soil-water partition coefficient (L/kg), $K_{oc} \times f_{oc}$

H' = dimensionless Henry's law constant

O_w = site-specific average water-filled porosity (by volume)

O_a = site-specific average air-filled porosity (by volume)

 $P_b = dry soil bulk density (kg/L)$

⁽¹⁾ Obtained from EPA Region 9 preliminary remediation goal (PRG) physical-chemical data for volatile organic compounds, November 2000

⁽²⁾ Site-specific average values

⁽³⁾ Obtained from EPA Soil Screening Guidance: Technical Background Document (TBD), EPA/540/R-95/128, dated July 1996, http://www.epa.gov/oerrpage/superfund/resources/soil/toc.htm

Table F-6 Comparison of Estimated VOC Concentrations in Groundwater to Measured VOC Concentrations in Groundwater

Chemical	Maximum Soil Concen- tration (mg/kg)	Estimated Maximum Potential Groundwater Concentration (mg/L)	Closest Groundwater Monitoring Well	Most Recent Date Sampled	Closest Groundwater Monitoring Well Concentration (mg/L)*
Chloroform	0.330	0.025	XMW-09	October 12, 2000	1.500**
PCE	0.047	0.0020	XMW-09	October 12, 2000	0.055
Methylene chloride	0.0068	0.00059	XMW-09	October 12, 2000	< 0.005**

^{*} Data obtained from K/J from groundwater sample collected on October 12, 2000 (laboratory report presented in Appendix B).

^{**} Groundwater monitoring wells located downgradient of XMW-09 include TMW-11 through TMW-14 and TMW-18. During the most recent groundwater sampling event (January 25, 2001), TMW-12 exhibited a chloroform concentration of 1.5 mg/L, and TWM-14 exhibited a methylene chloride concentration of 0.004 mg/L (laboratory report presented in Appendix C).

Table F-7. Summary of Cumulative Risks

		Onsite	Onsite DTSC
	Onsite Construction	Commercial/Industrial	Commercial/Indust
	Worker	Worker	rial Worker
Hazard Index			
Previously Estimated	0.13	0.000069	0.011
Vapor Migration from Deep Soil	NA NA	0.0000022	0.0000022
Vapor Migration from Groundwater	NA NA	0.00013	0.00013
Vapor Migration from Deep Soil			
Leachate and Subsequent Volatilization			
from Groundwater	NA	No additional risk	No additional risk
Total	0.13	0.00014	0.011
Excess Cancer Risk			
Previously Estimated	8.5E-07	4.7E-10	1.8E-06
Vapor Migration from Deep Soil	NA NA	7.7E-10	7.7E-10
Vapor Migration from Groundwater	NA NA	4.3E-08	4.3E-08
Vapor Migration from Deep Soil			
Leachate and Subsequent Volatilization			
from Groundwater	NA	No additional risk	No additional risk
Total	8.5E-07	4.4E-08	1.8E-06

NA = Not applicable

Appendix G Vapor Migration Model Results

SUMMARY OF VAPOR MIGRATION RESULTS - COMMERCIAL/LIGHT INDUSTRIAL SCENARIO BRC Former C-6 Facility, Los Angeles, California

Groundwater

CAS No.	Chemical	Cancer Risk	Hazard Index	Groundwater Concentration (ug/L)
71-55-6	Chloroform	3.6E-08	6.1E-05	1.50E+03
79-01-6	Tetrachloroethylene (PCE)	5.2E-09	7.0E-05	5.50E+01
75-09-2	Methylene Chloride	1.1E-11	7.7E-08	4.00E+00

Soil

				
CAS No.	Chemical	Cancer Risk	Hazard Index	Soil Concentration
				(mg/kg)
75-09-2	Methylene Chloride	3.0E-10	2.2E-06	6.80E-03

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL

Risk Calculations Version: November 1999

Project Name: BRC Former Boeing C-6 Facility, Los Angeles, California

Chemical: Tetrachloroethylene (PCE)

Variable Descriptions Units

CALCULATION OF SOIL GAS CONCENTRATION

A. SOURCE - Free Product/Soil>100mg/kg.									
Mole fraction	MF	=	0.00E+00	dimensionless					
Molecular weight	MW	=	1.70E+05	mg/mole					
V apor pressure	V P	i = 1	2.43E-02	The state of the s					
Universal gas constant	R	=		atm-m3/mole-K					
T emperature	T	$\dot{x} = \dot{x}$		Acceptable and the control of the co					
Calculated soil gas concentration	$C_{sg}(fp)$	=	0.00E+00	mg/m3					
B. SOURCE - Groundwater									
Water contamination level	C _w	=	5.50E+01	ug/l					
Henry's Law Constant	Н	$\dot{r}=\dot{r}$	7.50E-01	dimensionless					
Calculated soil gas concentration	$C_{sg}(gw)$	= .	4.13E+01	mg/m3					
C. SOURCE - Soil < 100 mg/kg									
Soil contamination level	\sim		e in the contract of	n .					
Con Contamination ICVCI	C_t	_ = .		mg/kg					
Henry's Law Constant	С _t Н		7.50E-01	mg/kg dimensionless					
			7.50E-01 1.50E+00	dimensionless					
Henry's Law Constant	Н	=	1.50E+00	dimensionless					
Henry's Law Constant Bulk density (dry)	Η ρ _b	=	1.50E+00 2.84E-01	dimensionless gm/cc					
Henry's Law Constant Bulk density (dry) Air-filled porosity	$\begin{array}{c} H \\ \rho_b \\ \theta_a \end{array}$	=	1.50E+00 2.84E-01 1.50E-01	dimensionless gm/cc dimensionless					
Henry's Law Constant Bulk density (dry) Air-filled porosity Water-filled porosity	$\begin{array}{c} H \\ \rho_b \\ \theta_a \\ \theta_w \end{array}$		1.50E+00 2.84E-01 1.50E-01 4.00E-03	dimensionless gm/cc dimensionless dimensionless dimensionless					
Henry's Law Constant Bulk density (dry) Air-filled porosity Water-filled porosity Weight fraction of organic carbon	$\begin{array}{l} H \\ \rho_b \\ \theta_a \\ \theta_w \\ f_{oc} \end{array}$		1.50E+00 2.84E-01 1.50E-01 4.00E-03	dimensionless gm/cc dimensionless dimensionless dimensionless cm3/gm					
Henry's Law Constant Bulk density (dry) Air-filled porosity Water-filled porosity Weight fraction of organic carbon Organic carbon partition coefficient	$\begin{array}{l} H \\ \rho_b \\ \theta_a \\ \theta_w \\ f_{oc} \\ K_{oc} \end{array}$		1.50E+00 2.84E-01 1.50E-01 4.00E-03 2.70E+02	dimensionless gm/cc dimensionless dimensionless dimensionless cm3/gm cm3/gm					

E. SOIL GAS CONCENTRATION USED IN RISK CALCULATIONS >>>> 4.13E+01 mg/m3

 $C_{sg}(m)$

mg/m3 (ug/l)

DIFFUSIVE TRANSPORT UPWARD IN UNSATURATED ZONE

Measured soil gas concentration

	WAY I AN IL I Demont De		-	A CONTRACTOR CONTRACTO
Total porosity	θ	=	4.34E-01	dimensionless
Air-filled porosity	θ_a	= 1.1	2.84E-01	dimensionless
Diffusion coefficient in air	Da	=	7.20E-02	cm2/sec
Effective diffusion coefficient	D _e	=	5.78E-03	cm2/sec
Bopar or cornamication of cog			1.98E+01	
Calculated Flux	F_x	$\hat{x} = \hat{x}$	4.33E-03	mg/m2-hour

Page 1-2

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL Page 2-2 Risk Calculations Version: November 1999

<u>CALCULATING VAPOR CONCENTRATION IN BUILDING</u>	ì
A. INDOOR AIR COMPONENT	

Α	=	9.68E+02	m2
		1.00E+00	dimensionless
S _b		1.00E-02	dimensionless
Af	= :	9.68E+00	m2
R_h		2.44E+00	m
ν		2.36E+03	m3
Е		8.30E-01	exchanges/hr
Q	=	1.96E+03	m3/hr
Ci	=	2.14E-05	mg/m3
L	=		m
u			m/hr
h	:		m
Co			
C,	::	2.14E-05	ma/m3
	Af Ph V E Q Ci L u h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

EXPOSURE SCENARIO

Body weight	BW =	7.00E+01	kg
Inhalation rate	IR =	2.00E+01	m3/day
Exposure duration	ED =	2.50E+01	yrs
Hours per day	conversion	8.00E+00	hr/day
Exposure time	ET = =	3.33E-01	hr/24 hours
Days per week	conversion	2.50E+00	days/week
Weeks per year	conversion		
Exposure frequency	EF	1.25E+02	days/yr
	AT =	2.56E+04	days
Averaging Time (non-carc. risk)	A T = :	9.13E+03	days

Chemical Intake (carc. risk) $\Pi_c = 2.49E-07 \text{ mg/kg-day}$ Chemical Intake (non-carc. risk) $\Pi_{nc} = 6.98E-07 \text{ mg/kg-day}$

NON-CARCINOGENIC RISK (Chronic Risk)

Chemical Intake (non-carc. risk)	IT_{nc} = 6.98E-07 mg/kg-day
Reference dose	RfD = 1.00E-02 mg/kg-day
Hazard Index	HI = 6.98E-05

CARCINOGENIC RISK

Chemical Intak	ke (carc. risk)	$T_{\mathbf{c}}$	2.49E-07	mg/kg-day
Slope factor (p	otency)	SF =	2.10E-02	1/(mg/kg-day)
Canoar Biok		Diak	5 22E 00	

Jancer Hisk = 5.22E-09

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL

Risk Calculations Version: November 1999

Project Name: BRC Former Boeing C-6 Facility, Los Angeles, California

Chemical: Methylene Chloride

Variable Descriptions Units

CALCULATION OF SOIL GAS CONCENTRATION										
A. SOURCE - Free Product/Soil>100mg/kg.										
Mole fraction	MF	$\dot{x} = \dot{x}$	0.00E+00	dimensionless						
Molecular weight	MW	= .	8.50E+04	mg/mole						
V apor pressure	V P	=	5.72E-01	atm						
Universal gas constant	R	=	8.20E-05	atm-m3/mole-K						
T emperature	T	=	2.93E+02	K						
Calculated soil gas concentration	C _{sg} (fp)	= -	0.00E+00	mg/m3						
B. SOURCE - Groundwater			· · · · · · · · · · · · · · · · · · · ·							
Water contamination level	Cw	=		ug/l						
Henry's Law Constant	H	= ;	9.00E-02	dimensionless						
Calculated soil gas concentration	C _{sg} (gw)	$\dot{x}=\frac{1}{2}\left(\frac{1}{2}\right) x^{2}$	0.00E+00	mg/m3						
C. SOURCE - Soil < 100 mg/kg										
Soil contamination level	C_{t}	=	6.80E-03	mg/kg						
Henry's Law Constant	H	$\dot{x}=\dot{x}$	9.00E-02	dimensionless						
Bulk density (dry)	$ ho_{ m b}$	=	1.50E+00	gm/cc						
Air-filled porosity	θ_a	=	2.84E-01	dimensionless						
Water-filled porosity	θ_{w}	=	1.50E-01	dimensionless						
Weight fraction of organic carbon	f _{oc}		4.00E-03	dimensionless						
Organic carbon partition coefficient	K _{oc}	$\dot{x} = \dot{x}$	1.00E+01	cm3/gm						
Soil/water distribution coef.	K _d	=	4.00E-02	cm3/gm						
Calculated soil gas concentration	C _{sg} (s)	=	3.90E+00	mg/m3						
D. SOURCE - Measured Soil Gas										
Measured soil gas concentration	C _{sg} (m)	=		mg/m3 (ug/l)						

E. SOIL GAS CONCENTRATION USED IN RISK CALCULATIONS >>>> 3.90E+00 mg/m3

DIFFUSIVE TRANSPORT UPWARD IN UNSATURATED ZONE

Total porosity	θ	=	4.34E-01	dimensionless
Air-filled porosity	θ_a	$\boldsymbol{x}^{\boldsymbol{t}} = \boldsymbol{x}^{\boldsymbol{t}} \cdot \boldsymbol{y}$	2.84E-01	dimensionless
Diffusion coefficient in air	Da	. = -	1.00E-01	cm2/sec
Effective diffusion coefficient	D_e	=	8.03E-03	cm2/sec
Depth of contamination or Csg	Χ	$\dot{x} = 1$	7.62E+00	m
Calculated Flux	F _x	=	1.48E-03	mg/m2-hour

Page 1-2

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL Risk Calculations

Page 2-2

Version: November 1999

C	ALCU	LAT	ING	VA	POR	CONC	ENTF	RATIO	VINE	BUILD	ING

A INDOOR AIR COMPONENT	RAILTAIMA			
A. INDOOR AIR COMPONENT			0.005.00	
Floor area of building % of floor area that flux occurs	Α	=	9.68E+02	dimensionless
Attenuation factor(Crack factor)	S_{b}		· · · · · · · · · · · · · · · · · · ·	dimensionless
	the control of the co		9.68E+00	
Flux area within building	Af		2.44E+00	
Interior Height of building	R _h	= .		the state of the s
Volume of building	V		2.36E+03	Annual Control of the
Exchange rate of air Ventilation rate	Ē		1.96E+03	exchanges/hr
	Q C _i			
Indoor air component	U _i	= .	7.30E-06	mg/m3
B. OUTDOOR AIR COMPONENT	L		0.005.00	
Downwind contamination length			0.00E+00 0.00E+00	
Wind speed Height of building openings	u h		0.00E+00	
(or height of breathing zone)		= :	0.00=+00	.111
Outdoor air component	Co		0.00E+00	ma/m2
and the control of th				-
C. TOTAL INDOOR AIR CONCENTRATION	Ct	= :	7.30E-06	mg/m3
EXPOSURE SCENARIO				
Body weight	BW		7.00E+01	ka
Inhalation rate	IR	= . = .		•
Exposure duration	ED.	= : = :	2.50E+01	
Hours per day	conversion		8.00E+00	
Exposure time	ET	=		hr/24 hours
Days per week	conversion			days/week
Weeks per year	conversion		5.00E+01	
Exposure frequency	EF		1.25E+02	
Averaging Time (carc. risk)	ĀT		2.56E+04	
Averaging Time (non-carc, risk)	ΑT	<u> </u>	9.13E+03	the state of the s
Chemical Intake (carc. risk)	Π _c	=	8.48E-08	mg/kg-day
Chemical Intake (non-carc, risk)	Π _{nc}	_,	** · · · · · · · · · · · · · · · · · ·	mg/kg-day
NON-CARCINOGENIC RISK (Chronic Risk)				
Chemical Intake (non-carc. risk)	Π _{nc}	= 1	2.38E-07	mg/kg-day
Reference dose	RfD	= 1		mg/kg-day
Hazard Index	HI	$=\frac{1}{2}\left(\frac{1}{2}\right)$	1, 19 to a rance	
CARCINOGENIC RISK				
Chemical Intake (carc. risk)	IT _c	_	8 48F-08	mg/kg-day
Slope factor (potency)	SF	_		1/(mg/kg-day)
Cancer Risk	ਤੂਰ Risk	=	2.97E-10	
Calicel DISK	UISK	=	2.31 E-10	

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL

Risk Calculations

Page 1-2

Version: November 1999

Project Name: BRC Former Boeing C-6 Facility, Los Angeles, California

Chemical: Methylene Chloride

Variable Descriptions

Units

CALCULATION OF SOIL GAS CONCENTRATION

CALCULATION OF SOIL GAS CONCENTRA	<u>IION</u>	1000	
A. SOURCE - Free Product/Soil>100mg/kg.			
Mole fraction	MF	=	0.00E+00 dimensionless
Molecular weight	MW	. = ·	8.50E+04 mg/mole
V apor pressure	V P	=	5.72E-01 atm
Universal gas constant	R	$\dot{x} = \dot{x}$	8.20E-05 atm-m3/mole-K
T emperature	T	=	2.93E+02 K
Calculated soil gas concentration	$C_{sg}(fp)$	=	0.00E+00 mg/m3
B. SOURCE - Groundwater			
Water contamination level	C _w	=	4.00E+00 ug/l
Henry's Law Constant	Н	=	9.00E-02 dimensionless
Calculated soil gas concentration	C _{sg} (gw)	. = -	3.60E-01 mg/m3
C. SOURCE - Soil < 100 mg/kg			
Soil contamination level	Ct	=	mg/kg
Henry's Law Constant	Н	= 1	9.00E-02 dimensionless
Bulk density (dry)	$ ho_{ m b}$	=	1.50E+00 gm/cc
Air-filled porosity	θ_a	= 1	2.84E-01 dimensionless
Water-filled porosity	θ_{w}	= :	1.50E-01 dimensionless
Weight fraction of organic carbon	f_{oc}	=	4.00E-03 dimensionless

Measured soil gas concentration $C_{sg}(m) =$

Organic carbon partition coefficient

Calculated soil gas concentration

Soil/water distribution coef.

D. SOURCE - Measured Soil Gas

mg/m3 (ug/l)

1.00E+01 cm3/gm

4.00E-02 cm3/gm

0.00E+00 mg/m3

E. SOIL GAS CONCENTRATION USED IN RISK CALCULATIONS >>>> 3.60E-01 mg/m3

 K_{oc}

 K_d

<u>DIFFUSIVE TRANSPORT UPWARD IN UNSATURATED ZONE</u>

Total porosity	θ	=	4.34E-01	dimensionless
Air-filled porosity	θ_a	$\dot{x}=\dot{x}$	2.84E-01	dimensionless
Diffusion coefficient in air	Da	= .	1.00E-01	cm2/sec
Effective diffusion coefficient	D _e	=	8.03E-03	cm2/sec
Depth of contamination or Csg	Χ	=	1.98E+01	m
Calculated Flux	F _x	= :	5.25E-05	mg/m2-hour

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL Risk Calculations

Page 2-2

Version: November 1999

C	ALCU	LAT	ING	VAF	OR CO	NCENTI	MOITAR	INB	UILDIN	G

A. INDOOR AIR COMPONENT	DVIL WITTO			
Floor area of building	Α	= .	9.68E+02	m2
% of floor area that flux occurs			1.00E+00	dimensionless
Attenuation factor(Crack factor)	S_{b}	=	1.00E-02	dimensionless
Flux area within building	At	· = 1.	9.68E+00	m2
Interior Height of building	R_n	= ",	2.44E+00	m
Volume of building	٧	= '	2.36E+03	m3
Exchange rate of air	Ē	= .	8.30E-01	exchanges/hr
Ventilation rate	Q		1.96E+03	_
Indoor air component	Ci	$= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$	2.59E-07	mg/m3
B. OUTDOOR AIR COMPONENT				
Downwind contamination length	L	=	0.00E+00	m
Wind speed	u	= 1	0.00E+00	m/hr
Height of building openings	h	=	0.00E+00	m
(or height of breathing zone)				
Outdoor air component	Co	=	0.00E+00	mg/m3
C. TOTAL INDOOR AIR CONCENTRATION	C _t	$= \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}}$	2.59E-07	mg/m3
EXPOSURE SCENARIO				
Body weight	BW		7.00E+01	• • • • • • • • • • • • • • • • • • • •
Inhalation rate	IR		2.00E+01	the contract of the contract o
Exposure duration	ED		2.50E+01	
Hours per day	* .	ì	8.00E+00	
Exposure time	ET	=		hr/24 hours
Days per week	conversion	1	2.50E+00	days/week
Weeks per year			5.00E+01	
Exposure frequency	and the second second		1.25E+02	
Averaging Time (carc. risk)	and the second second		2.56E+04	
Averaging Time (non-carc. risk)	AT	=	9.13E+03	days
Chemical Intake (carc. risk)	Пс	* *	2 01E 00	mg/kg-day
	Π _{ne}			
Chemical Intake (non-carc. risk)	11nc	=	0.40E-U9	mg/kg-day
NON-CARCINOGENIC RISK (Chronic Risk)				
Chemical Intake (non-carc. risk)	Ппс		8 46F-09	mg/kg-day
Reference dose	RfD	_ 		mg/kg-day
Hazard Index	HI		7.69E-08	mg/kg day
			1.002 00	
CARCINOGENIC RISK				
Chemical Intake (carc. risk)	IT _c	=	3.01E-09	mg/kg-day
Slope factor (potency)	SF	=		1/(mg/kg-day)
Cancer Risk	Risk	=	1.06E-11	
interest and the control of the cont				

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL

Risk Calculations Version: November 1999

Project Name: BRC Former Boeing C-6 Facility, Los Angeles, California

Chemical: Chloroform

Variable Descriptions Units

CALCULATION OF SOIL GAS CONCENTRA	<u>TION</u>			
A. SOURCE - Free Product/Soil>100mg/kg.				
Mole fraction	MF	=	0.00E+00	dimensionless
Molecular weight	MW	= .	1.20E+05	mg/mole
Vapor pressure	V P	=	2.59E-01	atm
Universal gas constant	R	. ≅ .	8.20E-05	atm-m3/mole-K
Temperature	T	= -	2.93E+02	. K
Calculated soil gas concentration	$C_{sg}(fp)$	$\dot{x}=\dot{x}^{2}$	0.00E+00	mg/m3
B. SOURCE - Groundwater			• • • • • • • • • • • • • • • • • • • •	
Water contamination level	C_w	=	1.50E+03	ug/l
Henry's Law Constant	Н	= :	1.50E-01	dimensionless
Calculated soil gas concentration	C _{sg} (gw)	-	2.25E+02	mg/m3
C. SOURCE - Soil < 100 mg/kg			· ······	
Soil contamination level	Ct	=		mg/kg
Henry's Law Constant	H	= .	1.50E-01	dimensionless
Bulk density (dry)	ρ_{b}	=	1.50E+00	gm/cc
Air-filled porosity	θ_{a}	=	2.84E-01	dimensionless
Water-filled porosity	θ_{w}	= :	1.50E-01	dimensionless
Weight fraction of organic carbon	f_{∞}	= 1	4.00E-03	dimensionless
Organic carbon partition coefficient	K _{oc}	=	5.30E+01	cm3/gm
Soil/water distribution coef.	K_d	= .	2.12E-01	cm3/gm
Calculated soil gas concentration	C _{sg} (s)	=	0.00E+00	mg/m3
D. SOURCE - Measured Soil Gas				
Measured soil gas concentration	C _{sg} (m)	=		mg/m3 (ug/l)

E. SOIL GAS CONCENTRATION USED IN RISK CALCULATIONS >>>> 2.25E+02 mg/m3

DIFFUSIVE TRANSPORT UPWARD IN UNSATURATED ZONE

Calculated Flux	F _x	= .	3.28E-02	mg/m2-hour
Depth of contamination or Csg				
Effective diffusion coefficient	D _e	$\dot{a} = \dot{a}$	8.03E-03	cm2/sec
 Diffusion coefficient in air	Da	=	1.00E-01	cm2/sec
Air-filled porosity	θ_a		2.84E-01	dimensionless
 Total porosity				dimensionless

Page 1-2

SITE ASSESSMENT & MITIGATION VAPOR RISK ASSESSMENT MODEL Page 2-2 Risk Calculations Version: November 1999

		N BUILDING

A. INDOOR AIR COMPONENT				
Floor area of building	Α	= -	9.68E+02	m2
% of floor area that flux occurs			1.00E+00	dimensionless
Attenuation factor(Crack factor)	S _b	= .	1.00E-02	dimensionless
Flux area within building	Af	=	9.68E+00	m2
Interior Height of building	R _h	=	2.44E+00	m
Volume of building	ν		2.36E+03	m3
Exchange rate of air	E		8.30E-01	exchanges/hr
Ventilation rate	Q		1.96E+03	m3/hr
Indoor air component	Ci	= 1	1.62E-04	mg/m3
B. OUTDOOR AIR COMPONENT				
Downwind contamination length	L	=	0.00E+00	m
Wind speed	u	=	0.00E+00	m/hr
Height of building openings	h	= :	0.00E+00	m
(or height of breathing zone)			·	
Outdoor air component	Co		0.00E+00	mg/m3
C. TOTAL INDOOR AIR CONCENTRATION	•		1 60 - 04	
O. IO IAL HADOOH AH I OOHOLIAH IA HOH	C	=	1.62E-04	mg/ms

EXPOSURE SCENARIO

Body weight	B W =	7.00E+01	kg
Inhalation rate	IR = ::	2.00E+01	m3/day
	ED = .	the state of the s	
	conversion		
Exposure time	ET = -:	3.33E-01	hr/24 hours
Days per week	conversion	2.50E+00	days/week
	conversion		
	EF= = 1.		
	A T = :		
Averaging Time (non-carc. risk)	A T = = :	9.13E+03	days

Chemical Intake (carc. risk) $\Pi_c = 1.88E-06 \text{ mg/kg-day}$ Chemical Intake (non-carc. risk) $\Pi_{nc} = 5.29E-06 \text{ mg/kg-day}$

NON-CARCINOGENIC RISK (Chronic Risk)

	Chemical Intake (non-carc.	risk)	II _n	1c =	5.29E-06	mg/kg-c	lay
	Reference dose		Rfl	D = -	8.60 E-02	mg/kg-c	lay
ď	Hazard Index		HI.		6 15F-05	Internation	

CARCINOGENIC RISK

Chemical Intake (c	arc. risk)	IT _c	= 1.88E-06	mg/kg-day
Slope factor (poter	ncy)	SF	= 1.90E-02	1/(mg/kg-day)
Cancer Dick		Diek	_ 3.58E_08	

CHEMICAL PARAMETERS

	MW (mg/mole)	H' (dimension- less)	Da (cm²/sec)	VP (atm)	Temp.	K _{oc} (cm³/g)	water Solubility (mg/L-water)	CSF (inh) (mg/kg-day) ⁻¹	Chronic RtD (inh) (mg/kg-day)
CAS No.									
127-18-4 Tetrachloroethylene (PCE) 75-09-2 Methylene Chloride 67-66-3 Chloroform	1.7E+05 a 8.5E+04 a 1.2E+05 a	7.5E-01 a 9.0E-02 a 1.5E-01 a	7.2E-02 a 1.0E-01 a 1.0E-01 a	2.4E-02 5.7E-01 2.6E-01	25 b 25 b 25 b	2.7E+02 a 1.0E+01 a 5.3E+01 a	2.0E+02 a 1.3E+04 a 7.9E+03 a	2.1E-02 c 3.5E-03 c 1.9E-02 c	1.0E-02 e 1.1E-01 e 8.6E-02 e

References:

- a EPA Region 9, Preliminary Remediation Goals (PRGs), 2000.
- b U.S. National Library of Medicine Hazardous Substance Data Bank (HSDB), http://www.nlm.nih.gov/pubs/factsheets/hsdbfs.html
- c Cal-EPA Office of Environmental Health Hazard Assessment (OEHHA), Toxicity Criteria Database and December 2000 California Cancer Potency Values, http://www.oehha.ca.gov/risk/chemicalDB/index.asp
- d Risk Assessment Information System (RAIS) Toxicity & Chemical-Specific Factors Data Base, January 2001, http://risk.lsd.ornl.gov/cgi-bin/tox/TOX_select?select=csf
- e Cal-EPA, Air Resources Board (ARB), Consolidated Table of OEHHA/ARB Approved Risk Assessment Health Values, October 10, 2000, http://www.arb.ca.gov/ab2588/riskassess.htm

Toxicity Value reference priority:

- 1. Cal-EPA Office of Environmental Health Hazard Assessment (OEHHA), Toxicity Criteria Database and December 2000 California Cancer Potency Values, http://www.oehha.ca.gov/risk/chemicalDB/index.asp
- 2. Cal-EPA, Air Resources Board (ARB), Consolidated Table of OEHHA/ARB Approved Risk Assessment Health Values, October 10, 2000, http://www.arb.ca.gov/ab2588/riskassess.htm
- 3. EPA Region 9, Preliminary Remediation Goals (PRGs), 2000.